test.py 10.8 KB
Newer Older
Yizhou Wang's avatar
Yizhou Wang committed
1
2
3
4
5
6
7
8
import os
import time
import argparse
import numpy as np

import torch
from torch.utils.data import DataLoader

Yizhou Wang's avatar
Yizhou Wang committed
9
from cruw import CRUW
Yizhou Wang's avatar
Yizhou Wang committed
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

from rodnet.datasets.CRDataset import CRDataset
from rodnet.datasets.collate_functions import cr_collate
from rodnet.core.post_processing import post_process, post_process_single_frame
from rodnet.core.post_processing import write_dets_results, write_dets_results_single_frame
from rodnet.core.post_processing import ConfmapStack
from rodnet.core.radar_processing import chirp_amp
from rodnet.utils.visualization import visualize_test_img, visualize_test_img_wo_gt
from rodnet.utils.load_configs import load_configs_from_file
from rodnet.utils.solve_dir import create_random_model_name

"""
Example:
    python test.py -m HG -dd /mnt/ssd2/rodnet/data/ -ld /mnt/ssd2/rodnet/checkpoints/ \
        -md HG-20200122-104604 -rd /mnt/ssd2/rodnet/results/
"""


def parse_args():
    parser = argparse.ArgumentParser(description='Test RODNet.')
    parser.add_argument('--config', type=str, help='choose rodnet model configurations')
    parser.add_argument('--data_dir', type=str, default='./data/', help='directory to the prepared data')
    parser.add_argument('--checkpoint', type=str, help='path to the saved trained model')
    parser.add_argument('--res_dir', type=str, default='./results/', help='directory to save testing results')
    parser.add_argument('--use_noise_channel', action="store_true", help="use noise channel or not")
    parser.add_argument('--demo', action="store_true", help='False: test with GT, True: demo without GT')
    parser.add_argument('--symbol', action="store_true", help='use symbol or text+score')
    args = parser.parse_args()
    return args


if __name__ == "__main__":
    args = parse_args()
    sybl = args.symbol

    config_dict = load_configs_from_file(args.config)
Yizhou Wang's avatar
Yizhou Wang committed
46
    dataset = CRUW(data_root=config_dict['dataset_cfg']['base_root'], sensor_config_name='sensor_config_rod2021')
Yizhou Wang's avatar
Yizhou Wang committed
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
    radar_configs = dataset.sensor_cfg.radar_cfg
    range_grid = dataset.range_grid
    angle_grid = dataset.angle_grid

    model_configs = config_dict['model_cfg']

    if model_configs['type'] == 'CDC':
        from rodnet.models import RODNetCDC as RODNet
    elif model_configs['type'] == 'HG':
        from rodnet.models import RODNetHG as RODNet
    elif model_configs['type'] == 'HGwI':
        from rodnet.models import RODNetHGwI as RODNet
    else:
        raise NotImplementedError

    # parameter settings
    dataset_configs = config_dict['dataset_cfg']
    train_configs = config_dict['train_cfg']
    test_configs = config_dict['test_cfg']

    win_size = train_configs['win_size']
    n_class = dataset.object_cfg.n_class

    confmap_shape = (n_class, radar_configs['ramap_rsize'], radar_configs['ramap_asize'])
    if 'stacked_num' in model_configs:
        stacked_num = model_configs['stacked_num']
    else:
        stacked_num = None

    if args.checkpoint is not None and os.path.exists(args.checkpoint):
        checkpoint_path = args.checkpoint
    else:
        raise ValueError("No trained model found.")

    if args.use_noise_channel:
        n_class_test = n_class + 1
    else:
        n_class_test = n_class

    print("Building model ... (%s)" % model_configs)
    if model_configs['type'] == 'CDC':
        rodnet = RODNet(n_class_test).cuda()
    elif model_configs['type'] == 'HG':
        rodnet = RODNet(n_class_test, stacked_num=stacked_num).cuda()
    elif model_configs['type'] == 'HGwI':
        rodnet = RODNet(n_class_test, stacked_num=stacked_num).cuda()
    else:
        raise TypeError

    checkpoint = torch.load(checkpoint_path)
    if 'optimizer_state_dict' in checkpoint:
        rodnet.load_state_dict(checkpoint['model_state_dict'])
    else:
        rodnet.load_state_dict(checkpoint)
    if 'model_name' in checkpoint:
        model_name = checkpoint['model_name']
    else:
        model_name = create_random_model_name(model_configs['name'], checkpoint_path)
    rodnet.eval()

    test_res_dir = os.path.join(os.path.join(args.res_dir, model_name))
    if not os.path.exists(test_res_dir):
        os.makedirs(test_res_dir)

    # save current checkpoint path
    weight_log_path = os.path.join(test_res_dir, 'weight_name.txt')
    if os.path.exists(weight_log_path):
        with open(weight_log_path, 'a+') as f:
            f.write(checkpoint_path + '\n')
    else:
        with open(weight_log_path, 'w') as f:
            f.write(checkpoint_path + '\n')

    total_time = 0
    total_count = 0

    data_root = dataset_configs['data_root']
    if not args.demo:
Yizhou Wang's avatar
Yizhou Wang committed
125
        seq_names = sorted(os.listdir(os.path.join(data_root, dataset_configs['test']['subdir'])))
Yizhou Wang's avatar
Yizhou Wang committed
126
    else:
Yizhou Wang's avatar
Yizhou Wang committed
127
        seq_names = sorted(os.listdir(os.path.join(data_root, dataset_configs['demo']['subdir'])))
Yizhou Wang's avatar
Yizhou Wang committed
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
    print(seq_names)

    for seq_name in seq_names:
        seq_res_dir = os.path.join(test_res_dir, seq_name)
        if not os.path.exists(seq_res_dir):
            os.makedirs(seq_res_dir)
        seq_res_viz_dir = os.path.join(seq_res_dir, 'rod_viz')
        if not os.path.exists(seq_res_viz_dir):
            os.makedirs(seq_res_viz_dir)
        f = open(os.path.join(seq_res_dir, 'rod_res.txt'), 'w')
        f.close()

    for subset in seq_names:
        print(subset)
        if not args.demo:
            crdata_test = CRDataset(data_dir=args.data_dir, dataset=dataset, config_dict=config_dict, split='test',
                                    noise_channel=args.use_noise_channel, subset=subset, is_random_chirp=False)
        else:
            crdata_test = CRDataset(data_dir=args.data_dir, dataset=dataset, config_dict=config_dict, split='demo',
                                    noise_channel=args.use_noise_channel, subset=subset, is_random_chirp=False)
        print("Length of testing data: %d" % len(crdata_test))
        dataloader = DataLoader(crdata_test, batch_size=1, shuffle=False, num_workers=0, collate_fn=cr_collate)

        seq_names = crdata_test.seq_names
        index_mapping = crdata_test.index_mapping

        init_genConfmap = ConfmapStack(confmap_shape)
        iter_ = init_genConfmap
        for i in range(train_configs['win_size'] - 1):
            while iter_.next is not None:
                iter_ = iter_.next
            iter_.next = ConfmapStack(confmap_shape)

        load_tic = time.time()
        for iter, data_dict in enumerate(dataloader):
            load_time = time.time() - load_tic
            data = data_dict['radar_data']
            image_paths = data_dict['image_paths'][0]
            seq_name = data_dict['seq_names'][0]
            if not args.demo:
                confmap_gt = data_dict['anno']['confmaps']
                obj_info = data_dict['anno']['obj_infos']
            else:
                confmap_gt = None
                obj_info = None

            save_path = os.path.join(test_res_dir, seq_name, 'rod_res.txt')
            start_frame_name = image_paths[0].split('/')[-1].split('.')[0]
            end_frame_name = image_paths[-1].split('/')[-1].split('.')[0]
            start_frame_id = int(start_frame_name)
            end_frame_id = int(end_frame_name)

            print("Testing %s: %s-%s" % (seq_name, start_frame_name, end_frame_name))
            tic = time.time()
            confmap_pred = rodnet(data.float().cuda())
            if stacked_num is not None:
                confmap_pred = confmap_pred[-1].cpu().detach().numpy()  # (1, 4, 32, 128, 128)
            else:
                confmap_pred = confmap_pred.cpu().detach().numpy()

            if args.use_noise_channel:
                confmap_pred = confmap_pred[:, :n_class, :, :, :]

            infer_time = time.time() - tic
            total_time += infer_time

            iter_ = init_genConfmap
            for i in range(confmap_pred.shape[2]):
                if iter_.next is None and i != confmap_pred.shape[2] - 1:
                    iter_.next = ConfmapStack(confmap_shape)
                iter_.append(confmap_pred[0, :, i, :, :])
                iter_ = iter_.next

            process_tic = time.time()
            for i in range(test_configs['test_stride']):
                total_count += 1
                res_final = post_process_single_frame(init_genConfmap.confmap, dataset, config_dict)
                cur_frame_id = start_frame_id + i
                write_dets_results_single_frame(res_final, cur_frame_id, save_path, dataset)
                confmap_pred_0 = init_genConfmap.confmap
                res_final_0 = res_final
                img_path = image_paths[i]
                radar_input = chirp_amp(data.numpy()[0, :, i, :, :], radar_configs['data_type'])
                fig_name = os.path.join(test_res_dir, seq_name, 'rod_viz', '%010d.jpg' % (cur_frame_id))
                if confmap_gt is not None:
                    confmap_gt_0 = confmap_gt[0, :, i, :, :]
                    visualize_test_img(fig_name, img_path, radar_input, confmap_pred_0, confmap_gt_0, res_final_0,
                                       dataset, sybl=sybl)
                else:
                    visualize_test_img_wo_gt(fig_name, img_path, radar_input, confmap_pred_0, res_final_0,
                                             dataset, sybl=sybl)
                init_genConfmap = init_genConfmap.next

            if iter == len(dataloader) - 1:
                offset = test_configs['test_stride']
                cur_frame_id = start_frame_id + offset
                while init_genConfmap is not None:
                    total_count += 1
                    res_final = post_process_single_frame(init_genConfmap.confmap, dataset, config_dict)
                    write_dets_results_single_frame(res_final, cur_frame_id, save_path, dataset)
                    confmap_pred_0 = init_genConfmap.confmap
                    res_final_0 = res_final
                    img_path = image_paths[offset]
                    radar_input = chirp_amp(data.numpy()[0, :, offset, :, :], radar_configs['data_type'])
                    fig_name = os.path.join(test_res_dir, seq_name, 'rod_viz', '%010d.jpg' % (cur_frame_id))
                    if confmap_gt is not None:
                        confmap_gt_0 = confmap_gt[0, :, offset, :, :]
                        visualize_test_img(fig_name, img_path, radar_input, confmap_pred_0, confmap_gt_0, res_final_0,
                                           dataset, sybl=sybl)
                    else:
                        visualize_test_img_wo_gt(fig_name, img_path, radar_input, confmap_pred_0, res_final_0,
                                                 dataset, sybl=sybl)
                    init_genConfmap = init_genConfmap.next
                    offset += 1
                    cur_frame_id += 1

            if init_genConfmap is None:
                init_genConfmap = ConfmapStack(confmap_shape)

            proc_time = time.time() - process_tic
            print("Load time: %.4f | Inference time: %.4f | Process time: %.4f" % (load_time, infer_time, proc_time))

            load_tic = time.time()

    print("ave time: %f" % (total_time / total_count))