prepare_data.py 7.01 KB
Newer Older
Yizhou Wang's avatar
Yizhou Wang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import os
import sys
import shutil
import numpy as np
import json
import pickle
import argparse

from cruw.cruw import CRUW

from rodnet.core.confidence_map import generate_confmap, normalize_confmap, add_noise_channel
from rodnet.utils.load_configs import load_configs_from_file
from rodnet.utils.visualization import visualize_confmap

SPLITS_LIST = ['train', 'valid', 'test', 'demo']


def parse_args():
    parser = argparse.ArgumentParser(description='Prepare RODNet data.')
    parser.add_argument('--config', type=str, dest='config', help='configuration file path')
    parser.add_argument('--data_root', type=str, help='directory to the prepared data')
    parser.add_argument('--split', type=str, dest='split', help='choose from train, valid, test, supertest')
    parser.add_argument('--out_data_dir', type=str, default='./data',
                        help='data directory to save the prepared data')
    parser.add_argument('--overwrite', action="store_true", help="overwrite prepared data if exist")
    args = parser.parse_args()
    return args


def prepare_data(dataset, config_dict, data_dir, split, save_dir, viz=False, overwrite=False):
    """
    Prepare pickle data for RODNet training and testing
    :param dataset: dataset object
    :param config_dict: rodnet configurations
    :param data_dir: output directory of the processed data
    :param split: train, valid, test, demo, etc.
    :param viz: whether visualize the prepared data
    :param overwrite: whether overwrite the existing prepared data
    :return:
    """
    camera_configs = dataset.sensor_cfg.camera_cfg
    radar_configs = dataset.sensor_cfg.radar_cfg
    n_chirp = radar_configs['n_chirps']
    n_class = dataset.object_cfg.n_class

    data_root = config_dict['dataset_cfg']['data_root']
    anno_root = config_dict['dataset_cfg']['anno_root']
    set_cfg = config_dict['dataset_cfg'][split]
    sets_seqs = set_cfg['seqs']

    if overwrite:
        if os.path.exists(os.path.join(data_dir, split)):
            shutil.rmtree(os.path.join(data_dir, split))
        os.makedirs(os.path.join(data_dir, split))

    for seq in sets_seqs:
        seq_path = os.path.join(data_root, seq)
        seq_anno_path = os.path.join(anno_root, seq + '.json')
        save_path = os.path.join(save_dir, seq + '.pkl')
        print("Sequence %s saving to %s" % (seq_path, save_path))

        try:
            if not overwrite and os.path.exists(save_path):
                print("%s already exists, skip" % save_path)
                continue
            image_dir = os.path.join(seq_path, camera_configs['image_folder'])
            image_paths = sorted([os.path.join(image_dir, name) for name in os.listdir(image_dir) if
                                  name.endswith(camera_configs['ext'])])
            n_frame = len(image_paths)

            radar_dir = os.path.join(seq_path, dataset.sensor_cfg.radar_cfg['chirp_folder'])
            if radar_configs['data_type'] == 'RI' or radar_configs['data_type'] == 'AP':
                radar_paths = sorted([os.path.join(radar_dir, name) for name in os.listdir(radar_dir) if
                                      name.endswith(dataset.sensor_cfg.radar_cfg['ext'])])
                n_radar_frame = len(radar_paths)
                assert n_frame == n_radar_frame
            elif radar_configs['data_type'] == 'RISEP' or radar_configs['data_type'] == 'APSEP':
                radar_paths_chirp = []
                for chirp_id in range(n_chirp):
                    chirp_dir = os.path.join(radar_dir, '%04d' % chirp_id)
                    paths = sorted([os.path.join(chirp_dir, name) for name in os.listdir(chirp_dir) if
                                    name.endswith(config_dict['dataset_cfg']['radar_cfg']['ext'])])
                    n_radar_frame = len(paths)
                    assert n_frame == n_radar_frame
                    radar_paths_chirp.append(paths)
                radar_paths = []
                for frame_id in range(n_frame):
                    frame_paths = []
                    for chirp_id in range(n_chirp):
                        frame_paths.append(radar_paths_chirp[chirp_id][frame_id])
                    radar_paths.append(frame_paths)
            else:
                raise ValueError

            data_dict = dict(
                data_root=data_root,
                data_path=seq_path,
                seq_name=seq,
                n_frame=n_frame,
                image_paths=image_paths,
                radar_paths=radar_paths,
                anno=None,
            )

            if split == 'demo':
                # no labels need to be saved
                pickle.dump(data_dict, open(save_path, 'wb'))
                continue
            else:
                with open(os.path.join(seq_anno_path), 'r') as f:
                    anno = json.load(f)

                anno_obj = {}
                anno_obj['metadata'] = anno['metadata']
                anno_obj['confmaps'] = []

                for metadata_frame in anno['metadata']:
                    n_obj = metadata_frame['rad_h']['n_objects']
                    obj_info = metadata_frame['rad_h']['obj_info']
                    if n_obj == 0:
                        confmap_gt = np.zeros(
                            (n_class + 1, radar_configs['ramap_rsize'], radar_configs['ramap_asize']),
                            dtype=float)
                        confmap_gt[-1, :, :] = 1.0  # initialize noise channal
                    else:
                        confmap_gt = generate_confmap(n_obj, obj_info, dataset, config_dict)
                        confmap_gt = normalize_confmap(confmap_gt)
                        confmap_gt = add_noise_channel(confmap_gt, dataset, config_dict)
                    assert confmap_gt.shape == (
                        n_class + 1, radar_configs['ramap_rsize'], radar_configs['ramap_asize'])
                    if viz:
                        visualize_confmap(confmap_gt)
                    anno_obj['confmaps'].append(confmap_gt)
                    # end objects loop

                anno_obj['confmaps'] = np.array(anno_obj['confmaps'])
                data_dict['anno'] = anno_obj

                # save pkl files
                pickle.dump(data_dict, open(save_path, 'wb'))
            # end frames loop

        except Exception as e:
            print("Error while preparing %s: %s" % (seq_path, e))


if __name__ == "__main__":
    args = parse_args()
    data_root = args.data_root
    splits = args.split.split(',')
    out_data_dir = args.out_data_dir
    overwrite = args.overwrite

    dataset = CRUW(data_root=data_root)
    config_dict = load_configs_from_file(args.config)
    radar_configs = dataset.sensor_cfg.radar_cfg

    for split in splits:
        if split not in SPLITS_LIST:
            raise TypeError("split %s cannot be recognized" % split)

    for split in splits:
        save_dir = os.path.join(out_data_dir, split)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)

        print('Preparing %s sets ...' % split)
        prepare_data(dataset, config_dict, out_data_dir, split, save_dir, viz=False, overwrite=overwrite)