README.md 1.88 KB
Newer Older
Yizhou Wang's avatar
Yizhou Wang committed
1
2
# RODNet: Radar Object Detection using Cross-Modal Supervision

Yizhou Wang's avatar
Yizhou Wang committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
This is the official implementation of our RODNet paper at WACV 2021. 

[[Paper]](https://openaccess.thecvf.com/content/WACV2021/html/Wang_RODNet_Radar_Object_Detection_Using_Cross-Modal_Supervision_WACV_2021_paper.html)
[[Dataset]](https://www.cruwdataset.org)

Please cite our WACV 2021 paper if this repository is helpful for your research:
```
@inproceedings{wang2021rodnet,
    author={Wang, Yizhou and Jiang, Zhongyu and Gao, Xiangyu and Hwang, Jenq-Neng and Xing, Guanbin and Liu, Hui},
    title={RODNet: Radar Object Detection Using Cross-Modal Supervision},
    booktitle={Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)},
    month={January},
    year={2021},
    pages={504-513}
}
```
Yizhou Wang's avatar
Yizhou Wang committed
19
20
## Installation

Yizhou Wang's avatar
Yizhou Wang committed
21
Create a conda environment for RODNet. Tested under Python 3.6, 3.7, 3.8.
Yizhou Wang's avatar
Yizhou Wang committed
22
```
Yizhou Wang's avatar
Yizhou Wang committed
23
conda create -n rodnet python=3.* -y
Yizhou Wang's avatar
Yizhou Wang committed
24
25
26
27
28
conda activate rodnet
```

Install pytorch.
```
Yizhou Wang's avatar
Yizhou Wang committed
29
conda install pytorch torchvision cudatoolkit=10.1 -c pytorch
Yizhou Wang's avatar
Yizhou Wang committed
30
31
```

Yizhou Wang's avatar
Yizhou Wang committed
32
33
34
35
36
37
38
39
40
Install `cruw-devkit` package. 
Please refer to [`cruw-devit`](https://github.com/yizhou-wang/cruw-devkit) repository for detailed instructions.
```
git clone https://github.com/yizhou-wang/cruw-devkit.git
cd cruw-devkit
pip install -e .
cd ..
```

Yizhou Wang's avatar
Yizhou Wang committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
Setup RODNet package.
```
pip install -e .
```

## Prepare data for RODNet

```
python tools/prepare_dataset/prepare_data.py \
        --config configs/<CONFIG_FILE> \
        --data_root <DATASET_ROOT> \
        --split train,test \
        --out_data_dir data/<DATA_FOLDER_NAME>
```

## Train models

```
python tools/train.py --config configs/<CONFIG_FILE> \
        --data_dir data/<DATA_FOLDER_NAME> \
        --log_dir checkpoints/
```

## Inference

```
python tools/test.py --config configs/<CONFIG_FILE> \
        --data_dir data/<DATA_FOLDER_NAME> \
        --checkpoint <CHECKPOINT_PATH> \
        --res_dir results/
```