test.py 12.4 KB
Newer Older
Yizhou Wang's avatar
Yizhou Wang committed
1
2
3
4
5
6
7
import os
import time
import argparse

import torch
from torch.utils.data import DataLoader

Yizhou Wang's avatar
Yizhou Wang committed
8
from cruw import CRUW
Yizhou Wang's avatar
Yizhou Wang committed
9
10
11
12
13
14
15
16

from rodnet.datasets.CRDataset import CRDataset
from rodnet.datasets.collate_functions import cr_collate
from rodnet.core.post_processing import post_process, post_process_single_frame
from rodnet.core.post_processing import write_dets_results, write_dets_results_single_frame
from rodnet.core.post_processing import ConfmapStack
from rodnet.core.radar_processing import chirp_amp
from rodnet.utils.visualization import visualize_test_img, visualize_test_img_wo_gt
17
from rodnet.utils.load_configs import load_configs_from_file, parse_cfgs, update_config_dict
Yizhou Wang's avatar
Yizhou Wang committed
18
19
20
21
22
from rodnet.utils.solve_dir import create_random_model_name


def parse_args():
    parser = argparse.ArgumentParser(description='Test RODNet.')
23

Yizhou Wang's avatar
Yizhou Wang committed
24
    parser.add_argument('--config', type=str, help='choose rodnet model configurations')
25
    parser.add_argument('--sensor_config', type=str, default='sensor_config_rod2021')
Yizhou Wang's avatar
Yizhou Wang committed
26
27
28
29
30
31
    parser.add_argument('--data_dir', type=str, default='./data/', help='directory to the prepared data')
    parser.add_argument('--checkpoint', type=str, help='path to the saved trained model')
    parser.add_argument('--res_dir', type=str, default='./results/', help='directory to save testing results')
    parser.add_argument('--use_noise_channel', action="store_true", help="use noise channel or not")
    parser.add_argument('--demo', action="store_true", help='False: test with GT, True: demo without GT')
    parser.add_argument('--symbol', action="store_true", help='use symbol or text+score')
32
33

    parser = parse_cfgs(parser)
Yizhou Wang's avatar
Yizhou Wang committed
34
35
36
37
38
39
40
41
42
    args = parser.parse_args()
    return args


if __name__ == "__main__":
    args = parse_args()
    sybl = args.symbol

    config_dict = load_configs_from_file(args.config)
43
44
    config_dict = update_config_dict(config_dict, args)  # update configs by args

45
    dataset = CRUW(data_root=config_dict['dataset_cfg']['base_root'], sensor_config_name=args.sensor_config)
Yizhou Wang's avatar
Yizhou Wang committed
46
47
48
49
    radar_configs = dataset.sensor_cfg.radar_cfg
    range_grid = dataset.range_grid
    angle_grid = dataset.angle_grid

Yizhou Wang's avatar
Yizhou Wang committed
50
    model_cfg = config_dict['model_cfg']
Yizhou Wang's avatar
Yizhou Wang committed
51

Yizhou Wang's avatar
Yizhou Wang committed
52
    if model_cfg['type'] == 'CDC':
Yizhou Wang's avatar
Yizhou Wang committed
53
        from rodnet.models import RODNetCDC as RODNet
Yizhou Wang's avatar
Yizhou Wang committed
54
    elif model_cfg['type'] == 'HG':
Yizhou Wang's avatar
Yizhou Wang committed
55
        from rodnet.models import RODNetHG as RODNet
Yizhou Wang's avatar
Yizhou Wang committed
56
    elif model_cfg['type'] == 'HGwI':
Yizhou Wang's avatar
Yizhou Wang committed
57
        from rodnet.models import RODNetHGwI as RODNet
Yizhou Wang's avatar
Yizhou Wang committed
58
59
60
61
62
63
    elif model_cfg['type'] == 'CDCv2':
        from rodnet.models import RODNetCDCDCN as RODNet
    elif model_cfg['type'] == 'HGv2':
        from rodnet.models import RODNetHGDCN as RODNet
    elif model_cfg['type'] == 'HGwIv2':
        from rodnet.models import RODNetHGwIDCN as RODNet
Yizhou Wang's avatar
Yizhou Wang committed
64
65
66
67
68
69
70
71
72
73
74
75
    else:
        raise NotImplementedError

    # parameter settings
    dataset_configs = config_dict['dataset_cfg']
    train_configs = config_dict['train_cfg']
    test_configs = config_dict['test_cfg']

    win_size = train_configs['win_size']
    n_class = dataset.object_cfg.n_class

    confmap_shape = (n_class, radar_configs['ramap_rsize'], radar_configs['ramap_asize'])
Yizhou Wang's avatar
Yizhou Wang committed
76
77
    if 'stacked_num' in model_cfg:
        stacked_num = model_cfg['stacked_num']
Yizhou Wang's avatar
Yizhou Wang committed
78
79
80
81
82
83
84
85
86
87
88
89
90
    else:
        stacked_num = None

    if args.checkpoint is not None and os.path.exists(args.checkpoint):
        checkpoint_path = args.checkpoint
    else:
        raise ValueError("No trained model found.")

    if args.use_noise_channel:
        n_class_test = n_class + 1
    else:
        n_class_test = n_class

Yizhou Wang's avatar
Yizhou Wang committed
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
    print("Building model ... (%s)" % model_cfg)
    if model_cfg['type'] == 'CDC':
        rodnet = RODNet(in_channels=2, n_class=n_class_test).cuda()
    elif model_cfg['type'] == 'HG':
        rodnet = RODNet(in_channels=2, n_class=n_class_test, stacked_num=stacked_num).cuda()
    elif model_cfg['type'] == 'HGwI':
        rodnet = RODNet(in_channels=2, n_class=n_class_test, stacked_num=stacked_num).cuda()
    elif model_cfg['type'] == 'CDCv2':
        in_chirps = len(radar_configs['chirp_ids'])
        rodnet = RODNet(in_channels=in_chirps, n_class=n_class_test,
                        mnet_cfg=config_dict['model_cfg']['mnet_cfg'],
                        dcn=config_dict['model_cfg']['dcn']).cuda()
    elif model_cfg['type'] == 'HGv2':
        in_chirps = len(radar_configs['chirp_ids'])
        rodnet = RODNet(in_channels=in_chirps, n_class=n_class_test, stacked_num=stacked_num,
                        mnet_cfg=config_dict['model_cfg']['mnet_cfg'],
                        dcn=config_dict['model_cfg']['dcn']).cuda()
    elif model_cfg['type'] == 'HGwIv2':
        in_chirps = len(radar_configs['chirp_ids'])
        rodnet = RODNet(in_channels=in_chirps, n_class=n_class_test, stacked_num=stacked_num,
                        mnet_cfg=config_dict['model_cfg']['mnet_cfg'],
                        dcn=config_dict['model_cfg']['dcn']).cuda()
Yizhou Wang's avatar
Yizhou Wang committed
113
114
115
116
117
118
119
120
121
122
123
    else:
        raise TypeError

    checkpoint = torch.load(checkpoint_path)
    if 'optimizer_state_dict' in checkpoint:
        rodnet.load_state_dict(checkpoint['model_state_dict'])
    else:
        rodnet.load_state_dict(checkpoint)
    if 'model_name' in checkpoint:
        model_name = checkpoint['model_name']
    else:
Yizhou Wang's avatar
Yizhou Wang committed
124
        model_name = create_random_model_name(model_cfg['name'], checkpoint_path)
Yizhou Wang's avatar
Yizhou Wang committed
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
    rodnet.eval()

    test_res_dir = os.path.join(os.path.join(args.res_dir, model_name))
    if not os.path.exists(test_res_dir):
        os.makedirs(test_res_dir)

    # save current checkpoint path
    weight_log_path = os.path.join(test_res_dir, 'weight_name.txt')
    if os.path.exists(weight_log_path):
        with open(weight_log_path, 'a+') as f:
            f.write(checkpoint_path + '\n')
    else:
        with open(weight_log_path, 'w') as f:
            f.write(checkpoint_path + '\n')

    total_time = 0
    total_count = 0

    data_root = dataset_configs['data_root']
    if not args.demo:
Yizhou Wang's avatar
Yizhou Wang committed
145
        seq_names = sorted(os.listdir(os.path.join(data_root, dataset_configs['test']['subdir'])))
Yizhou Wang's avatar
Yizhou Wang committed
146
    else:
Yizhou Wang's avatar
Yizhou Wang committed
147
        seq_names = sorted(os.listdir(os.path.join(data_root, dataset_configs['demo']['subdir'])))
Yizhou Wang's avatar
Yizhou Wang committed
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
    print(seq_names)

    for seq_name in seq_names:
        seq_res_dir = os.path.join(test_res_dir, seq_name)
        if not os.path.exists(seq_res_dir):
            os.makedirs(seq_res_dir)
        seq_res_viz_dir = os.path.join(seq_res_dir, 'rod_viz')
        if not os.path.exists(seq_res_viz_dir):
            os.makedirs(seq_res_viz_dir)
        f = open(os.path.join(seq_res_dir, 'rod_res.txt'), 'w')
        f.close()

    for subset in seq_names:
        print(subset)
        if not args.demo:
            crdata_test = CRDataset(data_dir=args.data_dir, dataset=dataset, config_dict=config_dict, split='test',
                                    noise_channel=args.use_noise_channel, subset=subset, is_random_chirp=False)
        else:
            crdata_test = CRDataset(data_dir=args.data_dir, dataset=dataset, config_dict=config_dict, split='demo',
                                    noise_channel=args.use_noise_channel, subset=subset, is_random_chirp=False)
        print("Length of testing data: %d" % len(crdata_test))
        dataloader = DataLoader(crdata_test, batch_size=1, shuffle=False, num_workers=0, collate_fn=cr_collate)

        seq_names = crdata_test.seq_names
        index_mapping = crdata_test.index_mapping

        init_genConfmap = ConfmapStack(confmap_shape)
        iter_ = init_genConfmap
        for i in range(train_configs['win_size'] - 1):
            while iter_.next is not None:
                iter_ = iter_.next
            iter_.next = ConfmapStack(confmap_shape)

        load_tic = time.time()
        for iter, data_dict in enumerate(dataloader):
            load_time = time.time() - load_tic
            data = data_dict['radar_data']
Yizhou Wang's avatar
Yizhou Wang committed
185
186
187
188
189
            try:
                image_paths = data_dict['image_paths'][0]
            except:
                print('warning: fail to load RGB images, will not visualize results')
                image_paths = None
Yizhou Wang's avatar
Yizhou Wang committed
190
191
192
193
194
195
196
197
198
199
            seq_name = data_dict['seq_names'][0]
            if not args.demo:
                confmap_gt = data_dict['anno']['confmaps']
                obj_info = data_dict['anno']['obj_infos']
            else:
                confmap_gt = None
                obj_info = None

            save_path = os.path.join(test_res_dir, seq_name, 'rod_res.txt')

Yizhou Wang's avatar
Yizhou Wang committed
200
201
202
            start_frame_id = data_dict['start_frame'].item()
            end_frame_id = data_dict['end_frame'].item()

Yizhou Wang's avatar
Yizhou Wang committed
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
            tic = time.time()
            confmap_pred = rodnet(data.float().cuda())
            if stacked_num is not None:
                confmap_pred = confmap_pred[-1].cpu().detach().numpy()  # (1, 4, 32, 128, 128)
            else:
                confmap_pred = confmap_pred.cpu().detach().numpy()

            if args.use_noise_channel:
                confmap_pred = confmap_pred[:, :n_class, :, :, :]

            infer_time = time.time() - tic
            total_time += infer_time

            iter_ = init_genConfmap
            for i in range(confmap_pred.shape[2]):
                if iter_.next is None and i != confmap_pred.shape[2] - 1:
                    iter_.next = ConfmapStack(confmap_shape)
                iter_.append(confmap_pred[0, :, i, :, :])
                iter_ = iter_.next

            process_tic = time.time()
            for i in range(test_configs['test_stride']):
                total_count += 1
                res_final = post_process_single_frame(init_genConfmap.confmap, dataset, config_dict)
                cur_frame_id = start_frame_id + i
                write_dets_results_single_frame(res_final, cur_frame_id, save_path, dataset)
                confmap_pred_0 = init_genConfmap.confmap
                res_final_0 = res_final
Yizhou Wang's avatar
Yizhou Wang committed
231
232
233
234
235
236
237
238
239
240
241
                if image_paths is not None:
                    img_path = image_paths[i]
                    radar_input = chirp_amp(data.numpy()[0, :, i, :, :], radar_configs['data_type'])
                    fig_name = os.path.join(test_res_dir, seq_name, 'rod_viz', '%010d.jpg' % (cur_frame_id))
                    if confmap_gt is not None:
                        confmap_gt_0 = confmap_gt[0, :, i, :, :]
                        visualize_test_img(fig_name, img_path, radar_input, confmap_pred_0, confmap_gt_0, res_final_0,
                                           dataset, sybl=sybl)
                    else:
                        visualize_test_img_wo_gt(fig_name, img_path, radar_input, confmap_pred_0, res_final_0,
                                                 dataset, sybl=sybl)
Yizhou Wang's avatar
Yizhou Wang committed
242
243
244
245
246
247
248
249
250
251
252
                init_genConfmap = init_genConfmap.next

            if iter == len(dataloader) - 1:
                offset = test_configs['test_stride']
                cur_frame_id = start_frame_id + offset
                while init_genConfmap is not None:
                    total_count += 1
                    res_final = post_process_single_frame(init_genConfmap.confmap, dataset, config_dict)
                    write_dets_results_single_frame(res_final, cur_frame_id, save_path, dataset)
                    confmap_pred_0 = init_genConfmap.confmap
                    res_final_0 = res_final
Yizhou Wang's avatar
Yizhou Wang committed
253
254
255
256
257
258
259
260
261
262
263
264
                    if image_paths is not None:
                        img_path = image_paths[offset]
                        radar_input = chirp_amp(data.numpy()[0, :, offset, :, :], radar_configs['data_type'])
                        fig_name = os.path.join(test_res_dir, seq_name, 'rod_viz', '%010d.jpg' % (cur_frame_id))
                        if confmap_gt is not None:
                            confmap_gt_0 = confmap_gt[0, :, offset, :, :]
                            visualize_test_img(fig_name, img_path, radar_input, confmap_pred_0, confmap_gt_0,
                                               res_final_0,
                                               dataset, sybl=sybl)
                        else:
                            visualize_test_img_wo_gt(fig_name, img_path, radar_input, confmap_pred_0, res_final_0,
                                                     dataset, sybl=sybl)
Yizhou Wang's avatar
Yizhou Wang committed
265
266
267
268
269
270
271
272
                    init_genConfmap = init_genConfmap.next
                    offset += 1
                    cur_frame_id += 1

            if init_genConfmap is None:
                init_genConfmap = ConfmapStack(confmap_shape)

            proc_time = time.time() - process_tic
Yizhou Wang's avatar
Yizhou Wang committed
273
274
            print("Testing %s: frame %4d to %4d | Load time: %.4f | Inference time: %.4f | Process time: %.4f" %
                  (seq_name, start_frame_id, end_frame_id, load_time, infer_time, proc_time))
Yizhou Wang's avatar
Yizhou Wang committed
275
276
277
278

            load_tic = time.time()

    print("ave time: %f" % (total_time / total_count))