train.py 11.3 KB
Newer Older
Yizhou Wang's avatar
Yizhou Wang committed
1
2
3
4
5
6
7
8
9
10
11
12
import os
import time
import json
import argparse

import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim.lr_scheduler import StepLR
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

Yizhou Wang's avatar
Yizhou Wang committed
13
from cruw import CRUW
Yizhou Wang's avatar
Yizhou Wang committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

from rodnet.datasets.CRDataset import CRDataset
from rodnet.datasets.CRDatasetSM import CRDatasetSM
from rodnet.datasets.CRDataLoader import CRDataLoader
from rodnet.datasets.collate_functions import cr_collate
from rodnet.core.radar_processing import chirp_amp
from rodnet.utils.solve_dir import create_dir_for_new_model
from rodnet.utils.load_configs import load_configs_from_file
from rodnet.utils.visualization import visualize_train_img


def parse_args():
    parser = argparse.ArgumentParser(description='Train RODNet.')
    parser.add_argument('--config', type=str, help='configuration file path')
    parser.add_argument('--data_dir', type=str, default='./data/', help='directory to the prepared data')
    parser.add_argument('--log_dir', type=str, default='./checkpoints/', help='directory to save trained model')
    parser.add_argument('--resume_from', type=str, default=None, help='path to the trained model')
    parser.add_argument('--save_memory', action="store_true", help="use customized dataloader to save memory")
    parser.add_argument('--use_noise_channel', action="store_true", help="use noise channel or not")
    args = parser.parse_args()
    return args


if __name__ == "__main__":
    args = parse_args()
    config_dict = load_configs_from_file(args.config)
Yizhou Wang's avatar
Yizhou Wang committed
40
41
    # dataset = CRUW(data_root=config_dict['dataset_cfg']['base_root'])
    dataset = CRUW(data_root=config_dict['dataset_cfg']['base_root'], sensor_config_name='sensor_config_rod2021')
Yizhou Wang's avatar
Yizhou Wang committed
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
    radar_configs = dataset.sensor_cfg.radar_cfg
    range_grid = dataset.range_grid
    angle_grid = dataset.angle_grid

    model_cfg = config_dict['model_cfg']
    if model_cfg['type'] == 'CDC':
        from rodnet.models import RODNetCDC as RODNet
    elif model_cfg['type'] == 'HG':
        from rodnet.models import RODNetHG as RODNet
    elif model_cfg['type'] == 'HGwI':
        from rodnet.models import RODNetHGwI as RODNet
    else:
        raise NotImplementedError

    if not os.path.exists(args.log_dir):
        os.makedirs(args.log_dir)
    train_model_path = args.log_dir

    # create / load models
    cp_path = None
    epoch_start = 0
    iter_start = 0
    if args.resume_from is not None and os.path.exists(args.resume_from):
        cp_path = args.resume_from
        model_dir, model_name = create_dir_for_new_model(model_cfg['name'], train_model_path)
    else:
        model_dir, model_name = create_dir_for_new_model(model_cfg['name'], train_model_path)

    train_viz_path = os.path.join(model_dir, 'train_viz')
    if not os.path.exists(train_viz_path):
        os.makedirs(train_viz_path)

    writer = SummaryWriter(model_dir)
    save_config_dict = {
        'args': vars(args),
        'config_dict': config_dict,
    }
    config_json_name = os.path.join(model_dir, 'config-' + time.strftime("%Y%m%d-%H%M%S") + '.json')
    with open(config_json_name, 'w') as fp:
        json.dump(save_config_dict, fp)
    train_log_name = os.path.join(model_dir, "train.log")
    with open(train_log_name, 'w'):
        pass

    n_class = dataset.object_cfg.n_class
    n_epoch = config_dict['train_cfg']['n_epoch']
    batch_size = config_dict['train_cfg']['batch_size']
    lr = config_dict['train_cfg']['lr']
    if 'stacked_num' in model_cfg:
        stacked_num = model_cfg['stacked_num']
    else:
        stacked_num = None

    print("Building dataloader ... (Mode: %s)" % ("save_memory" if args.save_memory else "normal"))

    if not args.save_memory:
        crdata_train = CRDataset(data_dir=args.data_dir, dataset=dataset, config_dict=config_dict, split='train',
                                 noise_channel=args.use_noise_channel)
        seq_names = crdata_train.seq_names
        index_mapping = crdata_train.index_mapping
        dataloader = DataLoader(crdata_train, batch_size, shuffle=True, num_workers=0, collate_fn=cr_collate)

        # crdata_valid = CRDataset(os.path.join(args.data_dir, 'data_details'),
        #                          os.path.join(args.data_dir, 'confmaps_gt'),
        #                          win_size=win_size, set_type='valid', stride=8)
        # seq_names_valid = crdata_valid.seq_names
        # index_mapping_valid = crdata_valid.index_mapping
        # dataloader_valid = DataLoader(crdata_valid, batch_size=batch_size, shuffle=True, num_workers=0)

    else:
        crdata_train = CRDatasetSM(data_root=args.data_dir, config_dict=config_dict, split='train',
                                   noise_channel=args.use_noise_channel)
        seq_names = crdata_train.seq_names
        index_mapping = crdata_train.index_mapping
        dataloader = CRDataLoader(crdata_train, shuffle=True, noise_channel=args.use_noise_channel)

        # crdata_valid = CRDatasetSM(os.path.join(args.data_dir, 'data_details'),
        #                          os.path.join(args.data_dir, 'confmaps_gt'),
        #                          win_size=win_size, set_type='train', stride=8, is_Memory_Limit=True)
        # seq_names_valid = crdata_valid.seq_names
        # index_mapping_valid = crdata_valid.index_mapping
        # dataloader_valid = CRDataLoader(crdata_valid, batch_size=batch_size, shuffle=True)

    if args.use_noise_channel:
        n_class_train = n_class + 1
    else:
        n_class_train = n_class

    print("Building model ... (%s)" % model_cfg)
    if model_cfg['type'] == 'CDC':
Yizhou Wang's avatar
Yizhou Wang committed
132
        rodnet = RODNet(n_class_train).cuda()
Yizhou Wang's avatar
Yizhou Wang committed
133
134
        criterion = nn.MSELoss()
    elif model_cfg['type'] == 'HG':
Yizhou Wang's avatar
Yizhou Wang committed
135
        rodnet = RODNet(n_class_train, stacked_num=stacked_num).cuda()
Yizhou Wang's avatar
Yizhou Wang committed
136
137
        criterion = nn.BCELoss()
    elif model_cfg['type'] == 'HGwI':
Yizhou Wang's avatar
Yizhou Wang committed
138
        rodnet = RODNet(n_class_train, stacked_num=stacked_num).cuda()
Yizhou Wang's avatar
Yizhou Wang committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
        criterion = nn.BCELoss()
    else:
        raise TypeError
    optimizer = optim.Adam(rodnet.parameters(), lr=lr)
    scheduler = StepLR(optimizer, step_size=config_dict['train_cfg']['lr_step'], gamma=0.1)

    iter_count = 0
    if cp_path is not None:
        checkpoint = torch.load(cp_path)
        if 'optimizer_state_dict' in checkpoint:
            rodnet.load_state_dict(checkpoint['model_state_dict'])
            optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
            epoch_start = checkpoint['epoch'] + 1
            iter_start = checkpoint['iter'] + 1
            loss_cp = checkpoint['loss']
            if 'iter_count' in checkpoint:
                iter_count = checkpoint['iter_count']
        else:
            rodnet.load_state_dict(checkpoint)

    # print training configurations
    print("Model name: %s" % model_name)
    print("Number of sequences to train: %d" % crdata_train.n_seq)
    print("Training dataset length: %d" % len(crdata_train))
    print("Batch size: %d" % batch_size)
    print("Number of iterations in each epoch: %d" % int(len(crdata_train) / batch_size))

    for epoch in range(epoch_start, n_epoch):

        tic_load = time.time()
        # if epoch == epoch_start:
        #     dataloader_start = iter_start
        # else:
        #     dataloader_start = 0

        for iter, data_dict in enumerate(dataloader):

            data = data_dict['radar_data']
            image_paths = data_dict['image_paths']
            confmap_gt = data_dict['anno']['confmaps']

            if not data_dict['status']:
                # in case load npy fail
                print("Warning: Loading NPY data failed! Skip this iteration")
                tic_load = time.time()
                continue

            tic = time.time()
            optimizer.zero_grad()  # zero the parameter gradients
            confmap_preds = rodnet(data.float().cuda())

            loss_confmap = 0
            if stacked_num is not None:
                for i in range(stacked_num):
                    loss_cur = criterion(confmap_preds[i], confmap_gt.float().cuda())
                    loss_confmap += loss_cur
                loss_confmap.backward()
                optimizer.step()
            else:
                loss_confmap = criterion(confmap_preds, confmap_gt.float().cuda())
                loss_confmap.backward()
                optimizer.step()

            if iter % config_dict['train_cfg']['log_step'] == 0:
                # print statistics
                print('epoch %2d, iter %4d: loss: %.8f | load time: %.4f | backward time: %.4f' %
                      (epoch + 1, iter + 1, loss_confmap.item(), tic - tic_load, time.time() - tic))
                with open(train_log_name, 'a+') as f_log:
                    f_log.write('epoch %2d, iter %4d: loss: %.8f | load time: %.4f | backward time: %.4f\n' %
                                (epoch + 1, iter + 1, loss_confmap.item(), tic - tic_load, time.time() - tic))

                if stacked_num is not None:
                    writer.add_scalar('loss/loss_all', loss_confmap.item(), iter_count)
                    confmap_pred = confmap_preds[stacked_num - 1].cpu().detach().numpy()
                else:
                    writer.add_scalar('loss/loss_all', loss_confmap.item(), iter_count)
                    confmap_pred = confmap_preds.cpu().detach().numpy()
                if 'mnet_cfg' in model_cfg:
                    chirp_amp_curr = chirp_amp(data.numpy()[0, :, 0, 0, :, :], radar_configs['data_type'])
                else:
                    chirp_amp_curr = chirp_amp(data.numpy()[0, :, 0, :, :], radar_configs['data_type'])

Yizhou Wang's avatar
Yizhou Wang committed
221
222
223
224
225
226
227
                # draw train images
                fig_name = os.path.join(train_viz_path,
                                        '%03d_%010d_%06d.png' % (epoch + 1, iter_count, iter + 1))
                img_path = image_paths[0][0]
                visualize_train_img(fig_name, img_path, chirp_amp_curr,
                                    confmap_pred[0, :n_class, 0, :, :],
                                    confmap_gt[0, :n_class, 0, :, :])
Yizhou Wang's avatar
Yizhou Wang committed
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267

            if (iter + 1) % config_dict['train_cfg']['save_step'] == 0:
                # validate current model
                # print("validing current model ...")
                # validate()

                # save current model
                print("saving current model ...")
                status_dict = {
                    'model_name': model_name,
                    'epoch': epoch,
                    'iter': iter,
                    'model_state_dict': rodnet.state_dict(),
                    'optimizer_state_dict': optimizer.state_dict(),
                    'loss': loss_confmap,
                    'iter_count': iter_count,
                }
                save_model_path = '%s/epoch_%02d_iter_%010d.pkl' % (model_dir, epoch + 1, iter_count + 1)
                torch.save(status_dict, save_model_path)

            iter_count += 1
            tic_load = time.time()

        # save current model
        print("saving current epoch model ...")
        status_dict = {
            'model_name': model_name,
            'epoch': epoch,
            'iter': iter,
            'model_state_dict': rodnet.state_dict(),
            'optimizer_state_dict': optimizer.state_dict(),
            'loss': loss_confmap,
            'iter_count': iter_count,
        }
        save_model_path = '%s/epoch_%02d_final.pkl' % (model_dir, epoch + 1)
        torch.save(status_dict, save_model_path)

        scheduler.step()

    print('Training Finished.')