- 29 Nov, 2023 1 commit
-
-
generatedunixname89002005307016 authored
Differential Revision: D51645956 fbshipit-source-id: 1ae7279efa0a27bb9bc5255527bafebb84fdafd0
-
- 16 Jun, 2023 1 commit
-
-
Jeremy Reizenstein authored
Summary: simple Reviewed By: shapovalov Differential Revision: D46438865 fbshipit-source-id: 0f41cb3ddd7e7aca4513267d33299531f7e8d373
-
- 14 May, 2023 1 commit
-
-
Virendra Kumar Pathak authored
Summary: We don't want to use print directly in stats.print() method. Instead this method will return the output string to the caller. Reviewed By: shapovalov Differential Revision: D45356240 fbshipit-source-id: 2cabe3cdfb9206bf09aa7b3cdd2263148a5ba145
-
- 23 Jan, 2023 1 commit
-
-
Roman Shapovalov authored
Summary: We don’t see much value in reporting metrics by camera difficulty while supporting that in new datasets is quite painful, hence deprecating training cameras in the data API and ignoring in evaluation. Reviewed By: bottler Differential Revision: D42678879 fbshipit-source-id: aad511f6cb2ca82745f31c19594e1d80594b61d7
-
- 03 Oct, 2022 1 commit
-
-
Darijan Gudelj authored
Summary: Loads the whole dataset and moves it to the device and sends it to for sampling to enable full dataset heterogeneous raysampling. Reviewed By: bottler Differential Revision: D39263009 fbshipit-source-id: c527537dfc5f50116849656c9e171e868f6845b1
-
- 01 Sep, 2022 1 commit
-
-
Pyre Bot Jr authored
Reviewed By: kjchalup Differential Revision: D39198333 fbshipit-source-id: 3f4ebcf625215f21d165073837578ff69b05f72d
-
- 30 Aug, 2022 1 commit
-
-
David Novotny authored
Summary: Adds yaml configs to train selected methods on CO3Dv2. Few more updates: 1) moved some fields to base classes so that we can check is_multisequence in experiment.py 2) skip loading all train cameras for multisequence datasets, without this, co3d-fewview is untrainable 3) fix bug in json index dataset provider v2 Reviewed By: kjchalup Differential Revision: D38952755 fbshipit-source-id: 3edac6fc8e20775aa70400bd73a0e6d52b091e0c
-
- 09 Aug, 2022 1 commit
-
-
Krzysztof Chalupka authored
Summary: LLFF (and most/all non-synth datasets) will have no background/foreground distinction. Add support for data with no fg mask. Also, we had a bug in stats loading, like this: * Load stats * One of the stats has a history of length 0 * That's fine, e.g. maybe it's fg_error but the dataset has no notion of fg/bg. So leave it as len 0 * Check whether all the stats have the same history length as an arbitrarily chosen "reference-stat" * Ooops the reference-stat happened to be the stat with length 0 * assert (legit_stat_len == reference_stat_len (=0)) ---> failed assert Also some minor fixes (from Jeremy's other diff) to support LLFF Reviewed By: davnov134 Differential Revision: D38475272 fbshipit-source-id: 5b35ac86d1d5239759f537621f41a3aa4eb3bd68
-
- 02 Aug, 2022 2 commits
-
-
David Novotny authored
Summary: Stats are logically connected to the training loop, not to the model. Hence, moving to the training loop. Also removing resume_epoch from OptimizerFactory in favor of a single place - ModelFactory. This removes the need for config consistency checks etc. Reviewed By: kjchalup Differential Revision: D38313475 fbshipit-source-id: a1d188a63e28459df381ff98ad8acdcdb14887b7
-
Jeremy Reizenstein authored
Summary: Remove the dataset's need to provide the task type. Reviewed By: davnov134, kjchalup Differential Revision: D38314000 fbshipit-source-id: 3805d885b5d4528abdc78c0da03247edb9abf3f7
-
- 01 Aug, 2022 1 commit
-
-
David Novotny authored
Summary: Currently, seeds are set only inside the train loop. But this does not ensure that the model weights are initialized the same way everywhere which makes all experiments irreproducible. This diff fixes it. Reviewed By: bottler Differential Revision: D38315840 fbshipit-source-id: 3d2ecebbc36072c2b68dd3cd8c5e30708e7dd808
-
- 30 Jul, 2022 1 commit
-
-
Krzysztof Chalupka authored
Summary: This large diff rewrites a significant portion of Implicitron's config hierarchy. The new hierarchy, and some of the default implementation classes, are as follows: ``` Experiment data_source: ImplicitronDataSource dataset_map_provider data_loader_map_provider model_factory: ImplicitronModelFactory model: GenericModel optimizer_factory: ImplicitronOptimizerFactory training_loop: ImplicitronTrainingLoop evaluator: ImplicitronEvaluator ``` 1) Experiment (used to be ExperimentConfig) is now a top-level Configurable and contains as members mainly (mostly new) high-level factory Configurables. 2) Experiment's job is to run factories, do some accelerate setup and then pass the results to the main training loop. 3) ImplicitronOptimizerFactory and ImplicitronModelFactory are new high-level factories that create the optimizer, scheduler, model, and stats objects. 4) TrainingLoop is a new configurable that runs the main training loop and the inner train-validate step. 5) Evaluator is a new configurable that TrainingLoop uses to run validation/test steps. 6) GenericModel is not the only model choice anymore. Instead, ImplicitronModelBase (by default instantiated with GenericModel) is a member of Experiment and can be easily replaced by a custom implementation by the user. All the new Configurables are children of ReplaceableBase, and can be easily replaced with custom implementations. In addition, I added support for the exponential LR schedule, updated the config files and the test, as well as added a config file that reproduces NERF results and a test to run the repro experiment. Reviewed By: bottler Differential Revision: D37723227 fbshipit-source-id: b36bee880d6aa53efdd2abfaae4489d8ab1e8a27
-