- 15 Feb, 2022 1 commit
-
-
Jeremy Reizenstein authored
Summary: Add a test for Transform3d.stack, and make it work with composed transformations. Fixes https://github.com/facebookresearch/pytorch3d/issues/1072 . Reviewed By: patricklabatut Differential Revision: D34211920 fbshipit-source-id: bfbd0895494ca2ad3d08a61bc82ba23637e168cc
-
- 14 Feb, 2022 1 commit
-
-
Jeremy Reizenstein authored
Summary: Move this simple layer from the NeRF project into pytorch3d. Reviewed By: shapovalov Differential Revision: D34126972 fbshipit-source-id: a9c6d6c3c1b662c1b844ea5d1b982007d4df83e6
-
- 10 Feb, 2022 1 commit
-
-
Sergei Ovchinnikov authored
Summary: When there is no "usemtl" statement in the .obj file use material from .mtl if there is one. https://github.com/facebookresearch/pytorch3d/issues/1068 Reviewed By: bottler Differential Revision: D34141152 fbshipit-source-id: 7a5b5cc3f0bb287dc617f68de2cd085db8f7ad94
-
- 09 Feb, 2022 1 commit
-
-
David Novotny authored
Summary: Implements a utility function to convert from 2D coordinates in Pytorch3D NDC space to the coordinates in grid_sample. Reviewed By: shapovalov Differential Revision: D33741394 fbshipit-source-id: 88981653356588fe646e6dea48fe7f7298738437
-
- 24 Jan, 2022 3 commits
-
-
Jeremy Reizenstein authored
Summary: Use existing workaround for batched 3x3 symeig because it is faster than torch.symeig. Added benchmark showing speedup. True = workaround. ``` Benchmark Avg Time(μs) Peak Time(μs) Iterations -------------------------------------------------------------------------------- normals_True_3000 16237 17233 31 normals_True_6000 33028 33391 16 normals_False_3000 18623069 18623069 1 normals_False_6000 36535475 36535475 1 ``` Should help https://github.com/facebookresearch/pytorch3d/issues/988 Reviewed By: nikhilaravi Differential Revision: D33660585 fbshipit-source-id: d1162b277f5d61ed67e367057a61f25e03888dce
-
Jeremy Reizenstein authored
Summary: Migrate away from NDCGridRaysampler and GridRaysampler to their more flexible replacements. Reviewed By: patricklabatut Differential Revision: D33281584 fbshipit-source-id: 65f8702e700a32d38f7cd6bda3924bb1707a0633
-
Jeremy Reizenstein authored
Summary: New MultinomialRaysampler succeeds GridRaysampler bringing masking and subsampling. Correspondingly, NDCMultinomialRaysampler succeeds NDCGridRaysampler. Reviewed By: nikhilaravi, shapovalov Differential Revision: D33256897 fbshipit-source-id: cd80ec6f35b110d1d20a75c62f4e889ba8fa5d45
-
- 21 Jan, 2022 2 commits
-
-
Jeremy Reizenstein authored
Summary: Fix https://github.com/facebookresearch/pytorch3d/issues/1021 that cameras_from_opencv_projection always creates on CPU. Reviewed By: nikhilaravi Differential Revision: D33508211 fbshipit-source-id: fadebd45cacafd633af6a58094cf6f654529992c
-
Jeremy Reizenstein authored
Summary: Function to join a list of cameras objects into a single batched object. FB: In the next diff I will remove the `concatenate_cameras` function in implicitron and update the callsites. Reviewed By: nikhilaravi Differential Revision: D33198209 fbshipit-source-id: 0c9f5f5df498a0def9dba756c984e6a946618158
-
- 20 Jan, 2022 1 commit
-
-
Jeremy Reizenstein authored
Summary: convert_to_tensors_and_broadcast had a special case for a single input, which is not used anywhere except fails to do the right thing if a TensorProperties has only one kwarg. At the moment AmbientLights may be the only way to hit the problem. Fix by removing the special case. Fixes https://github.com/facebookresearch/pytorch3d/issues/1043 Reviewed By: nikhilaravi Differential Revision: D33638345 fbshipit-source-id: 7a6695f44242e650504320f73b6da74254d49ac7
-
- 07 Jan, 2022 1 commit
-
-
Jeremy Reizenstein authored
Summary: The following snippet should work in more cases. point_cloud = Pointclouds( [pcl.points_packed() for pcl in point_clouds], features=[pcl.features_packed() for pcl in point_clouds], ) We therefore allow features and normals inputs to be lists which contain some (but not all) Nones. The initialization of a Pointclouds from empty data is also made a bit better now at working out how many feature channels there are. Reviewed By: davnov134 Differential Revision: D31795089 fbshipit-source-id: 54bf941ba80672d699ffd5ac28927740e830f8ab
-
- 04 Jan, 2022 2 commits
-
-
Jeremy Reizenstein authored
Summary: Manual adjustments for license changes. Reviewed By: patricklabatut Differential Revision: D33405657 fbshipit-source-id: 8a21735726f3aece9f9164da9e3b272b27db8032
-
Jeremy Reizenstein authored
Summary: Update all FB license strings to the new format. Reviewed By: patricklabatut Differential Revision: D33403538 fbshipit-source-id: 97a4596c5c888f3c54f44456dc07e718a387a02c
-
- 21 Dec, 2021 4 commits
-
-
Nikhila Ravi authored
Summary: Moved `HarmonicEmbedding` function in core PyTorch3D. In the next diff will update the NeRF project. Reviewed By: bottler Differential Revision: D32833808 fbshipit-source-id: 0a12ccd1627c0ce024463c796544c91eb8d4d122
-
Nikhila Ravi authored
Summary: Added a custom `__getitem__` method to `CamerasBase` which returns an instance of the appropriate camera instead of the `TensorAccessor` class. Long term we should deprecate the `TensorAccessor` and the `__getitem__` method on `TensorProperties` FB: In the next diff I will update the uses of `select_cameras` in implicitron. Reviewed By: bottler Differential Revision: D33185885 fbshipit-source-id: c31995d0eb126981e91ba61a6151d5404b263f67
-
Nikhila Ravi authored
Summary: Function to join a list of pointclouds as a batch similar to the corresponding function for Meshes. Reviewed By: bottler Differential Revision: D33145906 fbshipit-source-id: 160639ebb5065e4fae1a1aa43117172719f3871b
-
Jeremy Reizenstein authored
Summary: Fix some comments to match the recent change to transform_points_screen. Reviewed By: patricklabatut Differential Revision: D33243697 fbshipit-source-id: dc8d182667a9413bca2c2e3657f97b2f7a47c795
-
- 18 Dec, 2021 1 commit
-
-
Georgia Gkioxari authored
Summary: A small numerical fix for IoU for 3D boxes, fixes GH #992 * Adds a check for boxes with zero side areas (invalid boxes) * Fixes numerical issue when two boxes have coplanar sides Reviewed By: nikhilaravi Differential Revision: D33195691 fbshipit-source-id: 8a34b4d1f1e5ec2edb6d54143930da44bdde0906
-
- 07 Dec, 2021 3 commits
-
-
Jeremy Reizenstein authored
Summary: Demonstrate current behavior of pixels with new tests of all renderers. Reviewed By: gkioxari Differential Revision: D32651141 fbshipit-source-id: 3ca30b4274ed2699bc5e1a9c6437eb3f0b738cbf
-
Jeremy Reizenstein authored
Summary: All the renderers in PyTorch3D (pointclouds including pulsar, meshes, raysampling) use align_corners=False style. NDC space goes between the edges of the outer pixels. For a non square image with W>H, the vertical NDC space goes from -1 to 1 and the horizontal from -W/H to W/H. However it was recently pointed out that functionality which deals with screen space inside the camera classes is inconsistent with this. It unintentionally uses align_corners=True. This fixes that. This would change behaviour of the following: - If you create a camera in screen coordinates, i.e. setting in_ndc=False, then anything you do with the camera which touches NDC space may be affected, including trying to use renderers. The transform_points_screen function will not be affected... - If you call the function “transform_points_screen” on a camera defined in NDC space results will be different. I have illustrated in the diff how to get the old results from the new results but this probably isn’t the right long-term solution.. Reviewed By: gkioxari Differential Revision: D32536305 fbshipit-source-id: 377325a9137282971dcb7ca11a6cba3fc700c9ce
-
Jeremy Reizenstein authored
Summary: Move benchmarks to a separate directory as tests/ is getting big. Reviewed By: nikhilaravi Differential Revision: D32885462 fbshipit-source-id: a832662a494ee341ab77d95493c95b0af0a83f43
-
- 06 Dec, 2021 1 commit
-
-
Roman Shapovalov authored
Summary: As subj. Tests corrected accordingly. Also changed the test to provide a bit better diagnostics. Reviewed By: bottler Differential Revision: D32879498 fbshipit-source-id: 0a852e4a13dcb4ca3e54d71c6b263c5d2eeaf4eb
-
- 05 Nov, 2021 1 commit
-
-
Ignacio Rocco authored
Summary: - Old NDC convention had xy coords in [-1,1]x[-1,1] - New NDC convention has xy coords in [-1, 1]x[-u, u] or [-u, u]x[-1, 1] where u > 1 is the aspect ratio of the image. This PR fixes the NDC raysampler to use the new convention. Partial fix for https://github.com/facebookresearch/pytorch3d/issues/868 Pull Request resolved: https://github.com/fairinternal/pytorch3d/pull/29 Reviewed By: davnov134 Differential Revision: D31926148 Pulled By: bottler fbshipit-source-id: c6c42c60d1473b04e60ceb49c8c10951ddf03c74
-
- 26 Oct, 2021 2 commits
-
-
Jeremy Reizenstein authored
Summary: Attempt to overcome flaky test Reviewed By: patricklabatut Differential Revision: D31895560 fbshipit-source-id: 1ecbb1782b0eafe132f88425c48487c2d0e10d2d
-
una-dinosauria authored
Summary: Make sure the functions from `rotation_conversion` are jittable, and add some type hints. Add tests to verify this is the case. Pull Request resolved: https://github.com/facebookresearch/pytorch3d/pull/898 Reviewed By: patricklabatut Differential Revision: D31926103 Pulled By: bottler fbshipit-source-id: bff6013c5ca2d452e37e631bd902f0674d5ca091
-
- 16 Oct, 2021 1 commit
-
-
Jeremy Reizenstein authored
Summary: Fix #873, that grid_sizes defaults to the wrong dtype in points2volumes code, and mask doesn't have a proper default. Reviewed By: nikhilaravi Differential Revision: D31503545 fbshipit-source-id: fa32a1a6074fc7ac7bdb362edfb5e5839866a472
-
- 11 Oct, 2021 1 commit
-
-
Jeremy Reizenstein authored
Summary: PyTorch 1.6.0 came out on 28 Jul 2020. Stop builds for 1.5.0 and 1.5.1. Also update the news section of the README for recent releases. Reviewed By: nikhilaravi Differential Revision: D31442830 fbshipit-source-id: 20bdd8a07090776d0461240e71c6536d874615f6
-
- 08 Oct, 2021 1 commit
-
-
Nikhila Ravi authored
Summary: The epsilon value is important for determining whether vertices are inside/outside a plane. Reviewed By: gkioxari Differential Revision: D31485247 fbshipit-source-id: 5517575de7c02f1afa277d00e0190a81f44f5761
-
- 07 Oct, 2021 2 commits
-
-
Jeremy Reizenstein authored
Summary: Increase some test tolerances so that they pass in more situations, and re-enable two tests. Reviewed By: nikhilaravi Differential Revision: D31379717 fbshipit-source-id: 06a25470cc7b6d71cd639d9fd7df500d4b84c079
-
Ruilong Li authored
Summary: For non square image, the NDC space in pytorch3d is not square [-1, 1]. Instead, it is [-1, 1] for the smallest side, and [-u, u] for the largest side, where u > 1. This behavior is followed by the pytorch3d renderer. See the function `get_ndc_to_screen_transform` for a example. Without this fix, the rendering result is not correct using the converted pytorch3d-camera from a opencv-camera on non square images. This fix also helps the `transform_points_screen` function delivers consistent results with opencv projection for the converted pytorch3d-camera. Reviewed By: classner Differential Revision: D31366775 fbshipit-source-id: 8858ae7b5cf5c0a4af5a2af40a1358b2fe4cf74b
-
- 06 Oct, 2021 1 commit
-
-
Nikita Smetanin authored
Summary: Symmetric eigenvalues 3x3 implementation from https://github.com/fairinternal/denseposeslim/blob/roman_c3dpo/tools/functions.py#L612 based on https://en.wikipedia.org/wiki/Eigenvalue_algorithm#3.C3.973_matrices and https://www.geometrictools.com/Documentation/RobustEigenSymmetric3x3.pdf Benchmarks show significant outperformance of symeig3x3 in comparison with torch implementations (torch.symeig and torch.linalg.eigh) on GPU (P100), especially for large batches: 70-280ns per sample vs 3400ns per sample for torch_linalg_eigh_1048576_cpu It's worth mentioning that torch.linalg.eigh is still comparably fast for batches up to 8192 on CPU. Some tests are still failing as the error thresholds need to be adjusted appropriately. Reviewed By: patricklabatut Differential Revision: D29915453 fbshipit-source-id: 7c1b062da631c57c4e22a42dd0027ea5e205f1b5
-
- 02 Oct, 2021 1 commit
-
-
Jeremy Reizenstein authored
Summary: New function to randomly subsample Pointclouds to a maximum size. Reviewed By: nikhilaravi Differential Revision: D30936533 fbshipit-source-id: 789eb5004b6a233034ec1c500f20f2d507a303ff
-
- 01 Oct, 2021 3 commits
-
-
Jeremy Reizenstein authored
Summary: Move the core of add_points_to_volumes to the new C++/CUDA implementation. Add new flag to let the user stop this happening. Avoids copies. About a 30% speedup on the larger cases, up to 50% on the smaller cases. New timings ``` Benchmark Avg Time(μs) Peak Time(μs) Iterations -------------------------------------------------------------------------------- ADD_POINTS_TO_VOLUMES_cpu_10_trilinear_[25, 25, 25]_1000 4575 12591 110 ADD_POINTS_TO_VOLUMES_cpu_10_trilinear_[25, 25, 25]_10000 25468 29186 20 ADD_POINTS_TO_VOLUMES_cpu_10_trilinear_[25, 25, 25]_100000 202085 209897 3 ADD_POINTS_TO_VOLUMES_cpu_10_trilinear_[101, 111, 121]_1000 46059 48188 11 ADD_POINTS_TO_VOLUMES_cpu_10_trilinear_[101, 111, 121]_10000 83759 95669 7 ADD_POINTS_TO_VOLUMES_cpu_10_trilinear_[101, 111, 121]_100000 326056 339393 2 ADD_POINTS_TO_VOLUMES_cpu_10_nearest_[25, 25, 25]_1000 2379 4738 211 ADD_POINTS_TO_VOLUMES_cpu_10_nearest_[25, 25, 25]_10000 12100 63099 42 ADD_POINTS_TO_VOLUMES_cpu_10_nearest_[25, 25, 25]_100000 63323 63737 8 ADD_POINTS_TO_VOLUMES_cpu_10_nearest_[101, 111, 121]_1000 45216 45479 12 ADD_POINTS_TO_VOLUMES_cpu_10_nearest_[101, 111, 121]_10000 57205 58524 9 ADD_POINTS_TO_VOLUMES_cpu_10_nearest_[101, 111, 121]_100000 139499 139926 4 ADD_POINTS_TO_VOLUMES_cpu_100_trilinear_[25, 25, 25]_1000 40129 40431 13 ADD_POINTS_TO_VOLUMES_cpu_100_trilinear_[25, 25, 25]_10000 204949 239293 3 ADD_POINTS_TO_VOLUMES_cpu_100_trilinear_[25, 25, 25]_100000 1664541 1664541 1 ADD_POINTS_TO_VOLUMES_cpu_100_trilinear_[101, 111, 121]_1000 391573 395108 2 ADD_POINTS_TO_VOLUMES_cpu_100_trilinear_[101, 111, 121]_10000 674869 674869 1 ADD_POINTS_TO_VOLUMES_cpu_100_trilinear_[101, 111, 121]_100000 2713632 2713632 1 ADD_POINTS_TO_VOLUMES_cpu_100_nearest_[25, 25, 25]_1000 12726 13506 40 ADD_POINTS_TO_VOLUMES_cpu_100_nearest_[25, 25, 25]_10000 73103 73299 7 ADD_POINTS_TO_VOLUMES_cpu_100_nearest_[25, 25, 25]_100000 598634 598634 1 ADD_POINTS_TO_VOLUMES_cpu_100_nearest_[101, 111, 121]_1000 398742 399256 2 ADD_POINTS_TO_VOLUMES_cpu_100_nearest_[101, 111, 121]_10000 543129 543129 1 ADD_POINTS_TO_VOLUMES_cpu_100_nearest_[101, 111, 121]_100000 1242956 1242956 1 ADD_POINTS_TO_VOLUMES_cuda:0_10_trilinear_[25, 25, 25]_1000 1814 8884 276 ADD_POINTS_TO_VOLUMES_cuda:0_10_trilinear_[25, 25, 25]_10000 1996 8851 251 ADD_POINTS_TO_VOLUMES_cuda:0_10_trilinear_[25, 25, 25]_100000 4608 11529 109 ADD_POINTS_TO_VOLUMES_cuda:0_10_trilinear_[101, 111, 121]_1000 5183 12508 97 ADD_POINTS_TO_VOLUMES_cuda:0_10_trilinear_[101, 111, 121]_10000 7106 14077 71 ADD_POINTS_TO_VOLUMES_cuda:0_10_trilinear_[101, 111, 121]_100000 25914 31818 20 ADD_POINTS_TO_VOLUMES_cuda:0_10_nearest_[25, 25, 25]_1000 1778 8823 282 ADD_POINTS_TO_VOLUMES_cuda:0_10_nearest_[25, 25, 25]_10000 1825 8613 274 ADD_POINTS_TO_VOLUMES_cuda:0_10_nearest_[25, 25, 25]_100000 3154 10161 159 ADD_POINTS_TO_VOLUMES_cuda:0_10_nearest_[101, 111, 121]_1000 4888 9404 103 ADD_POINTS_TO_VOLUMES_cuda:0_10_nearest_[101, 111, 121]_10000 5194 9963 97 ADD_POINTS_TO_VOLUMES_cuda:0_10_nearest_[101, 111, 121]_100000 8109 14933 62 ADD_POINTS_TO_VOLUMES_cuda:0_100_trilinear_[25, 25, 25]_1000 3320 10306 151 ADD_POINTS_TO_VOLUMES_cuda:0_100_trilinear_[25, 25, 25]_10000 7003 8595 72 ADD_POINTS_TO_VOLUMES_cuda:0_100_trilinear_[25, 25, 25]_100000 49140 52957 11 ADD_POINTS_TO_VOLUMES_cuda:0_100_trilinear_[101, 111, 121]_1000 35890 36918 14 ADD_POINTS_TO_VOLUMES_cuda:0_100_trilinear_[101, 111, 121]_10000 58890 59337 9 ADD_POINTS_TO_VOLUMES_cuda:0_100_trilinear_[101, 111, 121]_100000 286878 287600 2 ADD_POINTS_TO_VOLUMES_cuda:0_100_nearest_[25, 25, 25]_1000 2484 8805 202 ADD_POINTS_TO_VOLUMES_cuda:0_100_nearest_[25, 25, 25]_10000 3967 9090 127 ADD_POINTS_TO_VOLUMES_cuda:0_100_nearest_[25, 25, 25]_100000 19423 19799 26 ADD_POINTS_TO_VOLUMES_cuda:0_100_nearest_[101, 111, 121]_1000 33228 33329 16 ADD_POINTS_TO_VOLUMES_cuda:0_100_nearest_[101, 111, 121]_10000 37292 37370 14 ADD_POINTS_TO_VOLUMES_cuda:0_100_nearest_[101, 111, 121]_100000 73550 74017 7 -------------------------------------------------------------------------------- ``` Previous timings ``` Benchmark Avg Time(μs) Peak Time(μs) Iterations -------------------------------------------------------------------------------- ADD_POINTS_TO_VOLUMES_cpu_10_trilinear_[25, 25, 25]_1000 10100 46422 50 ADD_POINTS_TO_VOLUMES_cpu_10_trilinear_[25, 25, 25]_10000 28442 32100 18 ADD_POINTS_TO_VOLUMES_cpu_10_trilinear_[25, 25, 25]_100000 241127 254269 3 ADD_POINTS_TO_VOLUMES_cpu_10_trilinear_[101, 111, 121]_1000 54149 79480 10 ADD_POINTS_TO_VOLUMES_cpu_10_trilinear_[101, 111, 121]_10000 125459 212734 4 ADD_POINTS_TO_VOLUMES_cpu_10_trilinear_[101, 111, 121]_100000 512739 512739 1 ADD_POINTS_TO_VOLUMES_cpu_10_nearest_[25, 25, 25]_1000 2866 13365 175 ADD_POINTS_TO_VOLUMES_cpu_10_nearest_[25, 25, 25]_10000 7026 12604 72 ADD_POINTS_TO_VOLUMES_cpu_10_nearest_[25, 25, 25]_100000 48822 55607 11 ADD_POINTS_TO_VOLUMES_cpu_10_nearest_[101, 111, 121]_1000 38098 38576 14 ADD_POINTS_TO_VOLUMES_cpu_10_nearest_[101, 111, 121]_10000 48006 54120 11 ADD_POINTS_TO_VOLUMES_cpu_10_nearest_[101, 111, 121]_100000 131563 138536 4 ADD_POINTS_TO_VOLUMES_cpu_100_trilinear_[25, 25, 25]_1000 64615 91735 8 ADD_POINTS_TO_VOLUMES_cpu_100_trilinear_[25, 25, 25]_10000 228815 246095 3 ADD_POINTS_TO_VOLUMES_cpu_100_trilinear_[25, 25, 25]_100000 3086615 3086615 1 ADD_POINTS_TO_VOLUMES_cpu_100_trilinear_[101, 111, 121]_1000 464298 465292 2 ADD_POINTS_TO_VOLUMES_cpu_100_trilinear_[101, 111, 121]_10000 1053440 1053440 1 ADD_POINTS_TO_VOLUMES_cpu_100_trilinear_[101, 111, 121]_100000 6736236 6736236 1 ADD_POINTS_TO_VOLUMES_cpu_100_nearest_[25, 25, 25]_1000 11940 12440 42 ADD_POINTS_TO_VOLUMES_cpu_100_nearest_[25, 25, 25]_10000 56641 58051 9 ADD_POINTS_TO_VOLUMES_cpu_100_nearest_[25, 25, 25]_100000 711492 711492 1 ADD_POINTS_TO_VOLUMES_cpu_100_nearest_[101, 111, 121]_1000 326437 329846 2 ADD_POINTS_TO_VOLUMES_cpu_100_nearest_[101, 111, 121]_10000 418514 427911 2 ADD_POINTS_TO_VOLUMES_cpu_100_nearest_[101, 111, 121]_100000 1524285 1524285 1 ADD_POINTS_TO_VOLUMES_cuda:0_10_trilinear_[25, 25, 25]_1000 5949 13602 85 ADD_POINTS_TO_VOLUMES_cuda:0_10_trilinear_[25, 25, 25]_10000 5817 13001 86 ADD_POINTS_TO_VOLUMES_cuda:0_10_trilinear_[25, 25, 25]_100000 23833 25971 21 ADD_POINTS_TO_VOLUMES_cuda:0_10_trilinear_[101, 111, 121]_1000 9029 16178 56 ADD_POINTS_TO_VOLUMES_cuda:0_10_trilinear_[101, 111, 121]_10000 11595 18601 44 ADD_POINTS_TO_VOLUMES_cuda:0_10_trilinear_[101, 111, 121]_100000 46986 47344 11 ADD_POINTS_TO_VOLUMES_cuda:0_10_nearest_[25, 25, 25]_1000 2554 9747 196 ADD_POINTS_TO_VOLUMES_cuda:0_10_nearest_[25, 25, 25]_10000 2676 9537 187 ADD_POINTS_TO_VOLUMES_cuda:0_10_nearest_[25, 25, 25]_100000 6567 14179 77 ADD_POINTS_TO_VOLUMES_cuda:0_10_nearest_[101, 111, 121]_1000 5840 12811 86 ADD_POINTS_TO_VOLUMES_cuda:0_10_nearest_[101, 111, 121]_10000 6102 13128 82 ADD_POINTS_TO_VOLUMES_cuda:0_10_nearest_[101, 111, 121]_100000 11945 11995 42 ADD_POINTS_TO_VOLUMES_cuda:0_100_trilinear_[25, 25, 25]_1000 7642 13671 66 ADD_POINTS_TO_VOLUMES_cuda:0_100_trilinear_[25, 25, 25]_10000 25190 25260 20 ADD_POINTS_TO_VOLUMES_cuda:0_100_trilinear_[25, 25, 25]_100000 212018 212134 3 ADD_POINTS_TO_VOLUMES_cuda:0_100_trilinear_[101, 111, 121]_1000 40421 45692 13 ADD_POINTS_TO_VOLUMES_cuda:0_100_trilinear_[101, 111, 121]_10000 92078 92132 6 ADD_POINTS_TO_VOLUMES_cuda:0_100_trilinear_[101, 111, 121]_100000 457211 457229 2 ADD_POINTS_TO_VOLUMES_cuda:0_100_nearest_[25, 25, 25]_1000 3574 10377 140 ADD_POINTS_TO_VOLUMES_cuda:0_100_nearest_[25, 25, 25]_10000 7222 13023 70 ADD_POINTS_TO_VOLUMES_cuda:0_100_nearest_[25, 25, 25]_100000 48127 48165 11 ADD_POINTS_TO_VOLUMES_cuda:0_100_nearest_[101, 111, 121]_1000 34732 35295 15 ADD_POINTS_TO_VOLUMES_cuda:0_100_nearest_[101, 111, 121]_10000 43050 51064 12 ADD_POINTS_TO_VOLUMES_cuda:0_100_nearest_[101, 111, 121]_100000 106028 106058 5 -------------------------------------------------------------------------------- ``` Reviewed By: nikhilaravi Differential Revision: D29548609 fbshipit-source-id: 7026e832ea299145c3f6b55687f3c1601294f5c0
-
Jeremy Reizenstein authored
Summary: Added CUDA implementation to match the new, still unused, C++ function for the core of points2vols. Reviewed By: nikhilaravi Differential Revision: D29548608 fbshipit-source-id: 16ebb61787fcb4c70461f9215a86ad5f97aecb4e
-
Jeremy Reizenstein authored
Summary: Single C++ function for the core of points2vols, not used anywhere yet. Added ability to control align_corners and the weight of each point, which may be useful later. Reviewed By: nikhilaravi Differential Revision: D29548607 fbshipit-source-id: a5cda7ec2c14836624e7dfe744c4bbb3f3d3dfe2
-
- 30 Sep, 2021 3 commits
-
-
Jeremy Reizenstein authored
Summary: Allow saving colors as 8bit when writing .ply files. Reviewed By: patricklabatut, nikitos9000 Differential Revision: D30905312 fbshipit-source-id: 44500982c9ed6d6ee901e04f9623e22792a0e7f7
-
Nikhila Ravi authored
Summary: CUDA implementation of 3D bounding box overlap calculation. Reviewed By: gkioxari Differential Revision: D31157919 fbshipit-source-id: 5dc89805d01fef2d6779f00a33226131e39c43ed
-
Nikhila Ravi authored
Summary: C++ Implementation of algorithm to compute 3D bounding boxes for batches of bboxes of shape (N, 8, 3) and (M, 8, 3). Reviewed By: gkioxari Differential Revision: D30905190 fbshipit-source-id: 02e2cf025cd4fa3ff706ce5cf9b82c0fb5443f96
-
- 29 Sep, 2021 1 commit
-
-
Nikhila Ravi authored
Summary: I have implemented an exact solution for 3D IoU of oriented 3D boxes. This file includes: * box3d_overlap: which computes the exact IoU of box1 and box2 * box3d_overlap_sampling: which computes an approximate IoU of box1 and box2 by sampling points within the boxes Note that both implementations currently do not support batching. Our exact IoU implementation is based on the fact that the intersecting shape of the two 3D boxes will be formed by segments of the surface of the boxes. Our algorithm computes these segments by reasoning whether triangles of one box are within the second box and vice versa. We deal with intersecting triangles by clipping them. Reviewed By: gkioxari Differential Revision: D30667497 fbshipit-source-id: 2f747f410f90b7f854eeaf3036794bc3ac982917
-
- 23 Sep, 2021 1 commit
-
-
Jeremy Reizenstein authored
Summary: Attempt to fix #659, an observation that the rasterizer is nondeterministic, by resolving tied faces by picking those with lower index. Reviewed By: nikhilaravi, patricklabatut Differential Revision: D30699039 fbshipit-source-id: 39ed797eb7e9ce7370ae71259ad6b757f9449923
-