- 03 Nov, 2020 1 commit
-
-
Christoph Lassner authored
Summary: This diff integrates the pulsar renderer source code into PyTorch3D as an alternative backend for the PyTorch3D point renderer. This diff is the first of a series of three diffs to complete that migration and focuses on the packaging and integration of the source code. For more information about the pulsar backend, see the release notes and the paper (https://arxiv.org/abs/2004.07484). For information on how to use the backend, see the point cloud rendering notebook and the examples in the folder `docs/examples`. Tasks addressed in the following diffs: * Add the PyTorch3D interface, * Add notebook examples and documentation (or adapt the existing ones to feature both interfaces). Reviewed By: nikhilaravi Differential Revision: D23947736 fbshipit-source-id: a5e77b53e6750334db22aefa89b4c079cda1b443
-
- 15 Apr, 2020 1 commit
-
-
Georgia Gkioxari authored
Summary: Adds knn backward to return `grad_pts1` and `grad_pts2`. Adds `knn_gather` to return the nearest neighbors in pts2. The BM tests include backward pass and are ran on an M40. ``` Benchmark Avg Time(μs) Peak Time(μs) Iterations -------------------------------------------------------------------------------- KNN_SQUARE_32_256_128_3_24_cpu 39558 43485 13 KNN_SQUARE_32_256_128_3_24_cuda:0 1080 1404 463 KNN_SQUARE_32_256_512_3_24_cpu 81950 85781 7 KNN_SQUARE_32_256_512_3_24_cuda:0 1519 1641 330 -------------------------------------------------------------------------------- Benchmark Avg Time(μs) Peak Time(μs) Iterations -------------------------------------------------------------------------------- KNN_RAGGED_32_256_128_3_24_cpu 13798 14650 37 KNN_RAGGED_32_256_128_3_24_cuda:0 1576 1713 318 KNN_RAGGED_32_256_512_3_24_cpu 31255 32210 16 KNN_RAGGED_32_256_512_3_24_cuda:0 2024 2162 248 -------------------------------------------------------------------------------- ``` Reviewed By: jcjohnson Differential Revision: D20945556 fbshipit-source-id: a16f616029c6b5f8c2afceb5f2bc12c5c20d2f3c
-
- 07 Apr, 2020 1 commit
-
-
Jeremy Reizenstein authored
Summary: Interface and working implementation of ragged KNN. Benchmarks (which aren't ragged) haven't slowed. New benchmark shows that ragged is faster than non-ragged of the same shape. Reviewed By: jcjohnson Differential Revision: D20696507 fbshipit-source-id: 21b80f71343a3475c8d3ee0ce2680f92f0fae4de
-
- 29 Mar, 2020 2 commits
-
-
Patrick Labatut authored
Summary: Address black + isort fbsource linter warnings from D20558374 (previous diff) Reviewed By: nikhilaravi Differential Revision: D20558373 fbshipit-source-id: d3607de4a01fb24c0d5269634563a7914bddf1c8
-
Jeremy Reizenstein authored
Summary: Run linter after recent changes. Fix long comment in knn.h which clang-format has reflowed badly. Add crude test that code doesn't call deprecated `.type()` or `.data()`. Reviewed By: nikhilaravi Differential Revision: D20692935 fbshipit-source-id: 28ce0308adae79a870cb41a810b7cf8744f41ab8
-
- 26 Mar, 2020 1 commit
-
-
Justin Johnson authored
Summary: Implements K-Nearest Neighbors with C++ and CUDA versions. KNN in CUDA is highly nontrivial. I've implemented a few different versions of the kernel, and we heuristically dispatch to different kernels based on the problem size. Some of the kernels rely on template specialization on either D or K, so we use template metaprogramming to compile specialized versions for ranges of D and K. These kernels are up to 3x faster than our existing 1-nearest-neighbor kernels, so we should also consider swapping out `nn_points_idx` to use these kernels in the backend. I've been working mostly on the CUDA kernels, and haven't converged on the correct Python API. I still want to benchmark against FAISS to see how far away we are from their performance. Reviewed By: bottler Differential Revision: D19729286 fbshipit-source-id: 608ffbb7030c21fe4008f330522f4890f0c3c21a
-