1. 21 Apr, 2020 2 commits
    • Jeremy Reizenstein's avatar
      Builds with pytorch 1.5 · a53a2d37
      Jeremy Reizenstein authored
      Summary:
      Add conda packages for pytorch 1.5. Make wheels be only pytorch 1.5.
      
      Note that pytorch 1.4 has conda packages for cuda 9.2, 10.0 and 10.1, whilst pytorch 1.5 has packages for cuda 9.2, 10.1 and 10.2. We mirror these choices.
      
      Reviewed By: nikhilaravi
      
      Differential Revision: D21157392
      
      fbshipit-source-id: 2f7311e6a83774a6d6c8afb8110b8bd9f37f1454
      a53a2d37
    • Georgia Gkioxari's avatar
      pytorch3d compatibility · f2b229c1
      Georgia Gkioxari authored
      Summary: Making meshrcnn compatible with new PyTorch3D features/API changes.
      
      Reviewed By: nikhilaravi
      
      Differential Revision: D21149516
      
      fbshipit-source-id: 1c7b8c1c1f5a2abe7d379fee10ded5d2db21515a
      f2b229c1
  2. 20 Apr, 2020 2 commits
    • Nikhila Ravi's avatar
      coarse rasterization bug fix · 9ef1ee84
      Nikhila Ravi authored
      Summary:
      Fix a bug which resulted in a rendering artifacts if the image size was not a multiple of 16.
      Fix: Revert coarse rasterization to original implementation and only update fine rasterization to reverse the ordering of Y and X axis. This is much simpler than the previous approach!
      
      Additional changes:
      - updated mesh rendering end-end tests to check outputs from both naive and coarse to fine rasterization.
      - added pointcloud rendering end-end tests
      
      Reviewed By: gkioxari
      
      Differential Revision: D21102725
      
      fbshipit-source-id: 2e7e1b013dd6dd12b3a00b79eb8167deddb2e89a
      9ef1ee84
    • Jeremy Reizenstein's avatar
      skip code tests in conda build · 1e474960
      Jeremy Reizenstein authored
      Summary:
      None of the current test_build tests make sense during `conda build`.
      
      Also remove the unnecessary dependency on the `six` library.
      
      Reviewed By: nikhilaravi
      
      Differential Revision: D20893852
      
      fbshipit-source-id: 685f0446eaa0bd9151eeee89fc630a1ddc0252ff
      1e474960
  3. 17 Apr, 2020 7 commits
    • Jeremy Reizenstein's avatar
      spelling and flake · 6207c359
      Jeremy Reizenstein authored
      Summary: mostly recent lintish things
      
      Reviewed By: nikhilaravi
      
      Differential Revision: D21089003
      
      fbshipit-source-id: 028733c1d875268f1879e4481da475b7100ba0b6
      6207c359
    • Jeremy Reizenstein's avatar
      torch C API warnings · 9397cd87
      Jeremy Reizenstein authored
      Summary: This is mostly replacing the old PackedTensorAccessor with the new PackedTensorAccessor64.
      
      Reviewed By: gkioxari
      
      Differential Revision: D21088773
      
      fbshipit-source-id: 5973e5a29d934eafb7c70ec5ec154ca076b64d27
      9397cd87
    • Jeremy Reizenstein's avatar
      vert_align for Pointclouds object · f25af969
      Jeremy Reizenstein authored
      Reviewed By: gkioxari
      
      Differential Revision: D21088730
      
      fbshipit-source-id: f8c125ac8c8009d45712ae63237ca64acf1faf45
      f25af969
    • Jeremy Reizenstein's avatar
      remove final nearest_neighbor files · e19df587
      Jeremy Reizenstein authored
      Summary: A couple of files for the removed nearest_neighbor functionality are left behind.
      
      Reviewed By: nikhilaravi
      
      Differential Revision: D21088624
      
      fbshipit-source-id: 4bb29016b4e5f63102765b384c363733b60032fa
      e19df587
    • Roman Shapovalov's avatar
      Efficient PnP. · 04d8bf6a
      Roman Shapovalov authored
      Summary:
      Efficient PnP algorithm to fit 2D to 3D correspondences under perspective assumption.
      
      Benchmarked both variants of nullspace and pick one; SVD takes 7 times longer in the 100K points case.
      
      Reviewed By: davnov134, gkioxari
      
      Differential Revision: D20095754
      
      fbshipit-source-id: 2b4519729630e6373820880272f674829eaed073
      04d8bf6a
    • David Novotny's avatar
      Camera inheritance + unprojections · 7788a380
      David Novotny authored
      Summary: Made a CameraBase class. Added `unproject_points` method for each camera class.
      
      Reviewed By: nikhilaravi
      
      Differential Revision: D20373602
      
      fbshipit-source-id: 7e3da5ae420091b5fcab400a9884ef29ad7a7343
      7788a380
    • David Novotny's avatar
      Pointcloud normals estimation. · 365945b1
      David Novotny authored
      Summary: Estimates normals of a point cloud.
      
      Reviewed By: gkioxari
      
      Differential Revision: D20860182
      
      fbshipit-source-id: 652ec2743fa645e02c01ffa37c2971bf27b89cef
      365945b1
  4. 16 Apr, 2020 4 commits
    • David Novotny's avatar
      ICP - point-to-point version · 8abbe22f
      David Novotny authored
      Summary:
      The iterative closest point algorithm - point-to-point version.
      
      Output of `bm_iterative_closest_point`:
      Argument key: `batch_size dim n_points_X n_points_Y use_pointclouds`
      
      ```
      Benchmark                                         Avg Time(μs)      Peak Time(μs) Iterations
      --------------------------------------------------------------------------------
      IterativeClosestPoint_1_3_100_100_False              107569          111323              5
      IterativeClosestPoint_1_3_100_1000_False             118972          122306              5
      IterativeClosestPoint_1_3_1000_100_False             108576          110978              5
      IterativeClosestPoint_1_3_1000_1000_False            331836          333515              2
      IterativeClosestPoint_1_20_100_100_False             134387          137842              4
      IterativeClosestPoint_1_20_100_1000_False            149218          153405              4
      IterativeClosestPoint_1_20_1000_100_False            414248          416595              2
      IterativeClosestPoint_1_20_1000_1000_False           374318          374662              2
      IterativeClosestPoint_10_3_100_100_False             539852          539852              1
      IterativeClosestPoint_10_3_100_1000_False            752784          752784              1
      IterativeClosestPoint_10_3_1000_100_False           1070700         1070700              1
      IterativeClosestPoint_10_3_1000_1000_False          1164020         1164020              1
      IterativeClosestPoint_10_20_100_100_False            374548          377337              2
      IterativeClosestPoint_10_20_100_1000_False           472764          476685              2
      IterativeClosestPoint_10_20_1000_100_False          1457175         1457175              1
      IterativeClosestPoint_10_20_1000_1000_False         2195820         2195820              1
      IterativeClosestPoint_1_3_100_100_True               110084          115824              5
      IterativeClosestPoint_1_3_100_1000_True              142728          147696              4
      IterativeClosestPoint_1_3_1000_100_True              212966          213966              3
      IterativeClosestPoint_1_3_1000_1000_True             369130          375114              2
      IterativeClosestPoint_10_3_100_100_True              354615          355179              2
      IterativeClosestPoint_10_3_100_1000_True             451815          452704              2
      IterativeClosestPoint_10_3_1000_100_True             511833          511833              1
      IterativeClosestPoint_10_3_1000_1000_True            798453          798453              1
      --------------------------------------------------------------------------------
      ```
      
      Reviewed By: shapovalov, gkioxari
      
      Differential Revision: D19909952
      
      fbshipit-source-id: f77fadc88fb7c53999909d594114b182ee2a3def
      8abbe22f
    • Nikhila Ravi's avatar
      bugfix · b5eb33b3
      Nikhila Ravi authored
      Summary: It seemed that even though the chamfer diff was rebased on top of the knn autograd diff, some of the final updates did not get applied. I'm really surprised that the sandcastle tests did not fail and prevent the diff from landing.
      
      Reviewed By: gkioxari
      
      Differential Revision: D21066156
      
      fbshipit-source-id: 5216efe95180c1b6082d0bac404fa1920cfb7b02
      b5eb33b3
    • Nikhila Ravi's avatar
      lint fixes · b530b0af
      Nikhila Ravi authored
      Summary: Resolved trailing whitespace warnings.
      
      Reviewed By: gkioxari
      
      Differential Revision: D21023982
      
      fbshipit-source-id: 14ea2ca372c13cfa987acc260264ca99ce44c461
      b530b0af
    • Nikhila Ravi's avatar
      remove nearest_neighbors · 3794f675
      Nikhila Ravi authored
      Summary: knn is more general and faster than the nearest_neighbor code, so remove the latter.
      
      Reviewed By: gkioxari
      
      Differential Revision: D20816424
      
      fbshipit-source-id: 75d6c44d17180752d0c9859814bbdf7892558158
      3794f675
  5. 15 Apr, 2020 3 commits
  6. 11 Apr, 2020 1 commit
    • Georgia Gkioxari's avatar
      point mesh distances · 487d4d66
      Georgia Gkioxari authored
      Summary:
      Implementation of point to mesh distances. The current diff contains two types:
      (a) Point to Edge
      (b) Point to Face
      
      ```
      
      Benchmark                                       Avg Time(μs)      Peak Time(μs) Iterations
      --------------------------------------------------------------------------------
      POINT_MESH_EDGE_4_100_300_5000_cuda:0                2745            3138            183
      POINT_MESH_EDGE_4_100_300_10000_cuda:0               4408            4499            114
      POINT_MESH_EDGE_4_100_3000_5000_cuda:0               4978            5070            101
      POINT_MESH_EDGE_4_100_3000_10000_cuda:0              9076            9187             56
      POINT_MESH_EDGE_4_1000_300_5000_cuda:0               1411            1487            355
      POINT_MESH_EDGE_4_1000_300_10000_cuda:0              4829            5030            104
      POINT_MESH_EDGE_4_1000_3000_5000_cuda:0              7539            7620             67
      POINT_MESH_EDGE_4_1000_3000_10000_cuda:0            12088           12272             42
      POINT_MESH_EDGE_8_100_300_5000_cuda:0                3106            3222            161
      POINT_MESH_EDGE_8_100_300_10000_cuda:0               8561            8648             59
      POINT_MESH_EDGE_8_100_3000_5000_cuda:0               6932            7021             73
      POINT_MESH_EDGE_8_100_3000_10000_cuda:0             24032           24176             21
      POINT_MESH_EDGE_8_1000_300_5000_cuda:0               5272            5399             95
      POINT_MESH_EDGE_8_1000_300_10000_cuda:0             11348           11430             45
      POINT_MESH_EDGE_8_1000_3000_5000_cuda:0             17478           17683             29
      POINT_MESH_EDGE_8_1000_3000_10000_cuda:0            25961           26236             20
      POINT_MESH_EDGE_16_100_300_5000_cuda:0               8244            8323             61
      POINT_MESH_EDGE_16_100_300_10000_cuda:0             18018           18071             28
      POINT_MESH_EDGE_16_100_3000_5000_cuda:0             19428           19544             26
      POINT_MESH_EDGE_16_100_3000_10000_cuda:0            44967           45135             12
      POINT_MESH_EDGE_16_1000_300_5000_cuda:0              7825            7937             64
      POINT_MESH_EDGE_16_1000_300_10000_cuda:0            18504           18571             28
      POINT_MESH_EDGE_16_1000_3000_5000_cuda:0            65805           66132              8
      POINT_MESH_EDGE_16_1000_3000_10000_cuda:0           90885           91089              6
      --------------------------------------------------------------------------------
      
      Benchmark                                       Avg Time(μs)      Peak Time(μs) Iterations
      --------------------------------------------------------------------------------
      POINT_MESH_FACE_4_100_300_5000_cuda:0                1561            1685            321
      POINT_MESH_FACE_4_100_300_10000_cuda:0               2818            2954            178
      POINT_MESH_FACE_4_100_3000_5000_cuda:0              15893           16018             32
      POINT_MESH_FACE_4_100_3000_10000_cuda:0             16350           16439             31
      POINT_MESH_FACE_4_1000_300_5000_cuda:0               3179            3278            158
      POINT_MESH_FACE_4_1000_300_10000_cuda:0              2353            2436            213
      POINT_MESH_FACE_4_1000_3000_5000_cuda:0             16262           16336             31
      POINT_MESH_FACE_4_1000_3000_10000_cuda:0             9334            9448             54
      POINT_MESH_FACE_8_100_300_5000_cuda:0                4377            4493            115
      POINT_MESH_FACE_8_100_300_10000_cuda:0               9728            9822             52
      POINT_MESH_FACE_8_100_3000_5000_cuda:0              26428           26544             19
      POINT_MESH_FACE_8_100_3000_10000_cuda:0             42238           43031             12
      POINT_MESH_FACE_8_1000_300_5000_cuda:0               3891            3982            129
      POINT_MESH_FACE_8_1000_300_10000_cuda:0              5363            5429             94
      POINT_MESH_FACE_8_1000_3000_5000_cuda:0             20998           21084             24
      POINT_MESH_FACE_8_1000_3000_10000_cuda:0            39711           39897             13
      POINT_MESH_FACE_16_100_300_5000_cuda:0               5955            6001             84
      POINT_MESH_FACE_16_100_300_10000_cuda:0             12082           12144             42
      POINT_MESH_FACE_16_100_3000_5000_cuda:0             44996           45176             12
      POINT_MESH_FACE_16_100_3000_10000_cuda:0            73042           73197              7
      POINT_MESH_FACE_16_1000_300_5000_cuda:0              8292            8374             61
      POINT_MESH_FACE_16_1000_300_10000_cuda:0            19442           19506             26
      POINT_MESH_FACE_16_1000_3000_5000_cuda:0            36059           36194             14
      POINT_MESH_FACE_16_1000_3000_10000_cuda:0           64644           64822              8
      --------------------------------------------------------------------------------
      ```
      
      Reviewed By: jcjohnson
      
      Differential Revision: D20590462
      
      fbshipit-source-id: 42a39837b514a546ac9471bfaff60eefe7fae829
      487d4d66
  7. 08 Apr, 2020 1 commit
    • Nikhila Ravi's avatar
      remove bin_size from the settings in the tutorials · 474c8b45
      Nikhila Ravi authored
      Summary: Remove `bin_size` and `max_faces_per_pixel` from being specified. This means the coarse-to-fine rasterization will be used by default and will help avoid confusion with the naive version.
      
      Reviewed By: jcjohnson
      
      Differential Revision: D20908905
      
      fbshipit-source-id: c181c88e844d888aa81a36870918307961dc1175
      474c8b45
  8. 07 Apr, 2020 2 commits
    • Jeremy Reizenstein's avatar
      pytorch version in package name · 0fecb2dd
      Jeremy Reizenstein authored
      Summary:
      Pytorch 1.5 is coming soon. I imagine we will want the ability to upload conda packages for pytorch3d to anaconda cloud for each of pytorch 1.4 and pytorch 1.5. This change adds the dependent pytorch version to the name of the conda package to make that feasible.
      
      As an example, a built package after this change will have a name like `linux-64/pytorch3d-0.1.1-py38_cu100_pyt14.tar.bz2`, instead of simply `linux-64/pytorch3d-0.1.1-py38_cu100.tar.bz2`.
      
      Also some tiny cleanup of circleci config.
      
      Other alternatives: (1) forcing users to update pytorch and pytorch3d together, (2) trying to get away with one build for multiple pytorch versions.
      
      Reviewed By: nikhilaravi
      
      Differential Revision: D20599039
      
      fbshipit-source-id: 20164eda4a5141afed47b3596e559950d796ffc9
      0fecb2dd
    • Jeremy Reizenstein's avatar
      heterogenous KNN · 01b5f7b2
      Jeremy Reizenstein authored
      Summary: Interface and working implementation of ragged KNN. Benchmarks (which aren't ragged) haven't slowed. New benchmark shows that ragged is faster than non-ragged of the same shape.
      
      Reviewed By: jcjohnson
      
      Differential Revision: D20696507
      
      fbshipit-source-id: 21b80f71343a3475c8d3ee0ce2680f92f0fae4de
      01b5f7b2
  9. 06 Apr, 2020 2 commits
    • Jeremy Reizenstein's avatar
      Allow conda's generated files. · 29b9c44c
      Jeremy Reizenstein authored
      Summary: The conda build process generates some files of its own, which we don't want to catch in our test for copyright notices.
      
      Reviewed By: nikhilaravi, patricklabatut
      
      Differential Revision: D20868566
      
      fbshipit-source-id: 76a786a3eb9a674d59e630cc06f346e8b82258a4
      29b9c44c
    • Jeremy Reizenstein's avatar
      fix recent lint · b87058c6
      Jeremy Reizenstein authored
      Summary: lint clean again
      
      Reviewed By: patricklabatut
      
      Differential Revision: D20868775
      
      fbshipit-source-id: ade4301c1012c5c6943186432465215701d635a9
      b87058c6
  10. 05 Apr, 2020 1 commit
    • David Novotny's avatar
      Initialization of Transform3D with a custom matrix. · 90dc7a08
      David Novotny authored
      Summary:
      Allows to initialize a Transform3D object with a batch of user-defined transformation matrices:
      ```
      t = Transform3D(matrix=torch.randn(2, 4, 4))
      ```
      
      Reviewed By: nikhilaravi
      
      Differential Revision: D20693475
      
      fbshipit-source-id: dccc49b2ca4c19a034844c63463953ba8f52c1bc
      90dc7a08
  11. 03 Apr, 2020 1 commit
    • Roman Shapovalov's avatar
      Weighted Umeyama. · e37085d9
      Roman Shapovalov authored
      Summary:
      1. Introduced weights to Umeyama implementation. This will be needed for weighted ePnP but is useful on its own.
      2. Refactored to use the same code for the Pointclouds mask and passed weights.
      3. Added test cases with random weights.
      4. Fixed a bug in tests that calls the function with 0 points (fails randomly in Pytorch 1.3, will be fixed in the next release: https://github.com/pytorch/pytorch/issues/31421 ).
      
      Reviewed By: gkioxari
      
      Differential Revision: D20070293
      
      fbshipit-source-id: e9f549507ef6dcaa0688a0f17342e6d7a9a4336c
      e37085d9
  12. 02 Apr, 2020 1 commit
    • David Novotny's avatar
      Umeyama · e5b1d6d3
      David Novotny authored
      Summary:
      Umeyama estimates a rigid motion between two sets of corresponding points.
      
      Benchmark output for `bm_points_alignment`
      
      ```
      Arguments key: [<allow_reflection>_<batch_size>_<dim>_<estimate_scale>_<n_points>_<use_pointclouds>]
      Benchmark                                                        Avg Time(μs)      Peak Time(μs) Iterations
      --------------------------------------------------------------------------------
      CorrespodingPointsAlignment_True_1_3_True_100_False                   7382            9833             68
      CorrespodingPointsAlignment_True_1_3_True_10000_False                 8183           10500             62
      CorrespodingPointsAlignment_True_1_3_False_100_False                  7301            9263             69
      CorrespodingPointsAlignment_True_1_3_False_10000_False                7945            9746             64
      CorrespodingPointsAlignment_True_1_20_True_100_False                 13706           41623             37
      CorrespodingPointsAlignment_True_1_20_True_10000_False               11044           33766             46
      CorrespodingPointsAlignment_True_1_20_False_100_False                 9908           28791             51
      CorrespodingPointsAlignment_True_1_20_False_10000_False               9523           18680             53
      CorrespodingPointsAlignment_True_10_3_True_100_False                 29585           32026             17
      CorrespodingPointsAlignment_True_10_3_True_10000_False               29626           36324             18
      CorrespodingPointsAlignment_True_10_3_False_100_False                26013           29253             20
      CorrespodingPointsAlignment_True_10_3_False_10000_False              25000           33820             20
      CorrespodingPointsAlignment_True_10_20_True_100_False                40955           41592             13
      CorrespodingPointsAlignment_True_10_20_True_10000_False              42087           42393             12
      CorrespodingPointsAlignment_True_10_20_False_100_False               39863           40381             13
      CorrespodingPointsAlignment_True_10_20_False_10000_False             40813           41699             13
      CorrespodingPointsAlignment_True_100_3_True_100_False               183146          194745              3
      CorrespodingPointsAlignment_True_100_3_True_10000_False             213789          231466              3
      CorrespodingPointsAlignment_True_100_3_False_100_False              177805          180796              3
      CorrespodingPointsAlignment_True_100_3_False_10000_False            184963          185695              3
      CorrespodingPointsAlignment_True_100_20_True_100_False              347181          347325              2
      CorrespodingPointsAlignment_True_100_20_True_10000_False            363259          363613              2
      CorrespodingPointsAlignment_True_100_20_False_100_False             351769          352496              2
      CorrespodingPointsAlignment_True_100_20_False_10000_False           375629          379818              2
      CorrespodingPointsAlignment_False_1_3_True_100_False                 11155           13770             45
      CorrespodingPointsAlignment_False_1_3_True_10000_False               10743           13938             47
      CorrespodingPointsAlignment_False_1_3_False_100_False                 9578           11511             53
      CorrespodingPointsAlignment_False_1_3_False_10000_False               9549           11984             53
      CorrespodingPointsAlignment_False_1_20_True_100_False                13809           14183             37
      CorrespodingPointsAlignment_False_1_20_True_10000_False              14084           15082             36
      CorrespodingPointsAlignment_False_1_20_False_100_False               12765           14177             40
      CorrespodingPointsAlignment_False_1_20_False_10000_False             12811           13096             40
      CorrespodingPointsAlignment_False_10_3_True_100_False                28823           39384             18
      CorrespodingPointsAlignment_False_10_3_True_10000_False              27135           27525             19
      CorrespodingPointsAlignment_False_10_3_False_100_False               26236           28980             20
      CorrespodingPointsAlignment_False_10_3_False_10000_False             42324           45123             12
      CorrespodingPointsAlignment_False_10_20_True_100_False              723902          723902              1
      CorrespodingPointsAlignment_False_10_20_True_10000_False            220007          252886              3
      CorrespodingPointsAlignment_False_10_20_False_100_False              55593           71636              9
      CorrespodingPointsAlignment_False_10_20_False_10000_False            44419           71861             12
      CorrespodingPointsAlignment_False_100_3_True_100_False              184768          185199              3
      CorrespodingPointsAlignment_False_100_3_True_10000_False            198657          213868              3
      CorrespodingPointsAlignment_False_100_3_False_100_False             224598          309645              3
      CorrespodingPointsAlignment_False_100_3_False_10000_False           197863          202002              3
      CorrespodingPointsAlignment_False_100_20_True_100_False             293484          309459              2
      CorrespodingPointsAlignment_False_100_20_True_10000_False           327253          366644              2
      CorrespodingPointsAlignment_False_100_20_False_100_False            420793          422194              2
      CorrespodingPointsAlignment_False_100_20_False_10000_False          462634          485542              2
      CorrespodingPointsAlignment_True_1_3_True_100_True                    7664            9909             66
      CorrespodingPointsAlignment_True_1_3_True_10000_True                  7190            8366             70
      CorrespodingPointsAlignment_True_1_3_False_100_True                   6549            8316             77
      CorrespodingPointsAlignment_True_1_3_False_10000_True                 6534            7710             77
      CorrespodingPointsAlignment_True_10_3_True_100_True                  29052           32940             18
      CorrespodingPointsAlignment_True_10_3_True_10000_True                30526           33453             17
      CorrespodingPointsAlignment_True_10_3_False_100_True                 28708           32993             18
      CorrespodingPointsAlignment_True_10_3_False_10000_True               30630           35973             17
      CorrespodingPointsAlignment_True_100_3_True_100_True                264909          320820              3
      CorrespodingPointsAlignment_True_100_3_True_10000_True              310902          322604              2
      CorrespodingPointsAlignment_True_100_3_False_100_True               246832          250634              3
      CorrespodingPointsAlignment_True_100_3_False_10000_True             276006          289061              2
      CorrespodingPointsAlignment_False_1_3_True_100_True                  11421           13757             44
      CorrespodingPointsAlignment_False_1_3_True_10000_True                11199           12532             45
      CorrespodingPointsAlignment_False_1_3_False_100_True                 11474           15841             44
      CorrespodingPointsAlignment_False_1_3_False_10000_True               10384           13188             49
      CorrespodingPointsAlignment_False_10_3_True_100_True                 36599           47340             14
      CorrespodingPointsAlignment_False_10_3_True_10000_True               40702           50754             13
      CorrespodingPointsAlignment_False_10_3_False_100_True                41277           52149             13
      CorrespodingPointsAlignment_False_10_3_False_10000_True              34286           37091             15
      CorrespodingPointsAlignment_False_100_3_True_100_True               254991          258578              2
      CorrespodingPointsAlignment_False_100_3_True_10000_True             257999          261285              2
      CorrespodingPointsAlignment_False_100_3_False_100_True              247511          248693              3
      CorrespodingPointsAlignment_False_100_3_False_10000_True            251807          263865              3
      ```
      
      Reviewed By: gkioxari
      
      Differential Revision: D19808389
      
      fbshipit-source-id: 83305a58627d2fc5dcaf3c3015132d8148f28c29
      e5b1d6d3
  13. 01 Apr, 2020 2 commits
    • Patrick Labatut's avatar
      No side effect with invalid inputs to save_obj / save_ply · 745aaf39
      Patrick Labatut authored
      Summary: Do not create output files with invalid inputs to `save_{obj,ply}()`.
      
      Reviewed By: bottler
      
      Differential Revision: D20720282
      
      fbshipit-source-id: 3b611a10da6f6eecacab2a1900bf16f89e2000aa
      745aaf39
    • Patrick Labatut's avatar
      Fix saving / loading empty PLY meshes · 83feed56
      Patrick Labatut authored
      Summary:
      Similar to D20392526, PLY files without vertices or faces should be allowed:
      - a PLY with only vertices can represent a point cloud
      - a PLY without any vertex or face is just empty
      - a PLY with faces referencing inexistent vertices has invalid data
      
      Reviewed By: gkioxari
      
      Differential Revision: D20400330
      
      fbshipit-source-id: 35a5f072603fd221f382c7faad5f37c3e0b49bb1
      83feed56
  14. 30 Mar, 2020 2 commits
    • Jeremy Reizenstein's avatar
      join_meshes_as_batch · b64fe513
      Jeremy Reizenstein authored
      Summary: rename join_meshes to join_meshes_as_batch.
      
      Reviewed By: nikhilaravi
      
      Differential Revision: D20671293
      
      fbshipit-source-id: e84d6a67d6c1ec28fb5e52d4607db8e92561a4cd
      b64fe513
    • Jeremy Reizenstein's avatar
      fix recent lint · 27eb791e
      Jeremy Reizenstein authored
      Summary: Flowing of compositing comments
      
      Reviewed By: nikhilaravi
      
      Differential Revision: D20556707
      
      fbshipit-source-id: 4abdc85e4f65abd41c4a890b6895bc5e95b4576b
      27eb791e
  15. 29 Mar, 2020 3 commits
    • Patrick Labatut's avatar
      Address black + isort fbsource linter warnings · d57daa6f
      Patrick Labatut authored
      Summary: Address black + isort fbsource linter warnings from D20558374 (previous diff)
      
      Reviewed By: nikhilaravi
      
      Differential Revision: D20558373
      
      fbshipit-source-id: d3607de4a01fb24c0d5269634563a7914bddf1c8
      d57daa6f
    • Patrick Labatut's avatar
      Enable black + isort fbsource linter · eb512ffd
      Patrick Labatut authored
      Summary:
      Enable `black` + `isort` (via `pyfmt`) i.e. `BLACK` fbsource linter.
      
      NOTE: the `BLACK` fbsource linter (and `black` itself) is (by design) ***not*** configurable. This forces aligning the existing options used by the tools invoked in `dev/linter.sh` (for 3rd party developers) with `BLACK` fbsource linting. Without this reconciliation, the different linters (used internally or by 3rd party developers) would simply conflict with each other resulting in artificial back-and-forth changes (for instance line width which `BLACK` forces to 88 characters).
      
      Reviewed By: nikhilaravi
      
      Differential Revision: D20558374
      
      fbshipit-source-id: 614fa00664f8eb9d2de7438c29b807dfbf36ad20
      eb512ffd
    • Jeremy Reizenstein's avatar
      Linter, deprecated type() · 37c5c8e0
      Jeremy Reizenstein authored
      Summary: Run linter after recent changes. Fix long comment in knn.h which clang-format has reflowed badly. Add crude test that code doesn't call deprecated `.type()` or `.data()`.
      
      Reviewed By: nikhilaravi
      
      Differential Revision: D20692935
      
      fbshipit-source-id: 28ce0308adae79a870cb41a810b7cf8744f41ab8
      37c5c8e0
  16. 28 Mar, 2020 1 commit
    • Patrick Labatut's avatar
      Fix saving / loading empty OBJ files · 3061c5b6
      Patrick Labatut authored
      Summary:
      OBJ files without vertices or faces should be allowed:
      - an OBJ with only vertices can represent a point cloud
      - an OBJ without any vertex or face is just empty
      - an OBJ with faces referencing inexistent vertices has invalid data
      
      Reviewed By: gkioxari
      
      Differential Revision: D20392526
      
      fbshipit-source-id: e72c846ff1e5787fb11d527af3fefa261f9eb0ee
      3061c5b6
  17. 26 Mar, 2020 4 commits
    • Justin Johnson's avatar
      Implement K-Nearest Neighbors · 870290df
      Justin Johnson authored
      Summary:
      Implements K-Nearest Neighbors with C++ and CUDA versions.
      
      KNN in CUDA is highly nontrivial. I've implemented a few different versions of the kernel, and we heuristically dispatch to different kernels based on the problem size. Some of the kernels rely on template specialization on either D or K, so we use template metaprogramming to compile specialized versions for ranges of D and K.
      
      These kernels are up to 3x faster than our existing 1-nearest-neighbor kernels, so we should also consider swapping out `nn_points_idx` to use these kernels in the backend.
      
      I've been working mostly on the CUDA kernels, and haven't converged on the correct Python API.
      
      I still want to benchmark against FAISS to see how far away we are from their performance.
      
      Reviewed By: bottler
      
      Differential Revision: D19729286
      
      fbshipit-source-id: 608ffbb7030c21fe4008f330522f4890f0c3c21a
      870290df
    • Nikhila Ravi's avatar
      website small fixes · 02d4968e
      Nikhila Ravi authored
      Summary: Small website fix.
      
      Reviewed By: bottler
      
      Differential Revision: D20672621
      
      fbshipit-source-id: b787e626f732a8abdd92c29e5e4e8bbe27bc7e2f
      02d4968e
    • Jeremy Reizenstein's avatar
      type() deprecated · 81a4aa18
      Jeremy Reizenstein authored
      Summary:
      Replace `tensor.type().is_cuda()` with the preferred `tensor.is_cuda()`.
      Replace `AT_DISPATCH_FLOATING_TYPES(tensor.type(), ...` with `AT_DISPATCH_FLOATING_TYPES(tensor.scalar_type(), ...`.
      These avoid deprecation warnings in future pytorch.
      
      Reviewed By: nikhilaravi
      
      Differential Revision: D20646565
      
      fbshipit-source-id: 1a0c15978c871af816b1dd7d4a7ea78242abd95e
      81a4aa18
    • Jeremy Reizenstein's avatar
      data() deprecated · e22d431e
      Jeremy Reizenstein authored
      Summary: replace `data()` with preferred `data_ptr()`, avoiding some deprecation warnings in future pytorch.
      
      Reviewed By: nikhilaravi
      
      Differential Revision: D20645738
      
      fbshipit-source-id: 8f6e02d292729b804fa2a66f94dd0517bbaf7887
      e22d431e
  18. 24 Mar, 2020 1 commit
    • Jeremy Reizenstein's avatar
      fix CPU-only hiding of cuda calls · 8fa76786
      Jeremy Reizenstein authored
      Summary: CPU-only builds should be fixed by this change
      
      Reviewed By: nikhilaravi
      
      Differential Revision: D20598014
      
      fbshipit-source-id: df098ec4c6c93d38515172805fe57cac7463c506
      8fa76786