"src/targets/gpu/vscode:/vscode.git/clone" did not exist on "2ee0f9e85ba5d66c6b7435116da4bb4646c295ee"
- 24 Mar, 2023 1 commit
-
-
Emilien Garreau authored
Summary: Introduces the OverfitModel for NeRF-style training with overfitting to one scene. It is a specific case of GenericModel. It has been disentangle to ease usage. ## General modification 1. Modularize a minimum GenericModel to introduce OverfitModel 2. Introduce OverfitModel and ensure through unit testing that it behaves like GenericModel. ## Modularization The following methods have been extracted from GenericModel to allow modularity with ManyViewModel: - get_objective is now a call to weighted_sum_losses - log_loss_weights - prepare_inputs The generic methods have been moved to an utils.py file. Simplify the code to introduce OverfitModel. Private methods like chunk_generator are now public and can now be used by ManyViewModel. Reviewed By: shapovalov Differential Revision: D43771992 fbshipit-source-id: 6102aeb21c7fdd56aa2ff9cd1dd23fd9fbf26315
-
- 30 Jul, 2022 1 commit
-
-
Krzysztof Chalupka authored
Summary: This large diff rewrites a significant portion of Implicitron's config hierarchy. The new hierarchy, and some of the default implementation classes, are as follows: ``` Experiment data_source: ImplicitronDataSource dataset_map_provider data_loader_map_provider model_factory: ImplicitronModelFactory model: GenericModel optimizer_factory: ImplicitronOptimizerFactory training_loop: ImplicitronTrainingLoop evaluator: ImplicitronEvaluator ``` 1) Experiment (used to be ExperimentConfig) is now a top-level Configurable and contains as members mainly (mostly new) high-level factory Configurables. 2) Experiment's job is to run factories, do some accelerate setup and then pass the results to the main training loop. 3) ImplicitronOptimizerFactory and ImplicitronModelFactory are new high-level factories that create the optimizer, scheduler, model, and stats objects. 4) TrainingLoop is a new configurable that runs the main training loop and the inner train-validate step. 5) Evaluator is a new configurable that TrainingLoop uses to run validation/test steps. 6) GenericModel is not the only model choice anymore. Instead, ImplicitronModelBase (by default instantiated with GenericModel) is a member of Experiment and can be easily replaced by a custom implementation by the user. All the new Configurables are children of ReplaceableBase, and can be easily replaced with custom implementations. In addition, I added support for the exponential LR schedule, updated the config files and the test, as well as added a config file that reproduces NERF results and a test to run the repro experiment. Reviewed By: bottler Differential Revision: D37723227 fbshipit-source-id: b36bee880d6aa53efdd2abfaae4489d8ab1e8a27
-
- 06 Jul, 2022 1 commit
-
-
Jeremy Reizenstein authored
Summary: Add facilities for dataloading non-sequential scenes. Reviewed By: shapovalov Differential Revision: D37291277 fbshipit-source-id: 0a33e3727b44c4f0cba3a2abe9b12f40d2a20447
-
- 27 May, 2022 1 commit
-
-
Roman Shapovalov authored
Summary: As subj. Reviewed By: bottler Differential Revision: D36705775 fbshipit-source-id: 7370710e863025dc07a140b41f77a7c752e3159f
-
- 20 May, 2022 3 commits
-
-
Jeremy Reizenstein authored
Summary: replace dataloader_zoo with a pluggable DataLoaderMapProvider. Reviewed By: shapovalov Differential Revision: D36475441 fbshipit-source-id: d16abb190d876940434329928f2e3f2794a25416
-
Jeremy Reizenstein authored
Summary: replace dataset_zoo with a pluggable DatasetMapProvider. The logic is now in annotated_file_dataset_map_provider. Reviewed By: shapovalov Differential Revision: D36443965 fbshipit-source-id: 9087649802810055e150b2fbfcc3c197a761f28a
-
Jeremy Reizenstein authored
Summary: Move dataset_args and dataloader_args from ExperimentConfig into a new member called datasource so that it can contain replaceables. Also add enum Task for task type. Reviewed By: shapovalov Differential Revision: D36201719 fbshipit-source-id: 47d6967bfea3b7b146b6bbd1572e0457c9365871
-
- 21 Mar, 2022 1 commit
-
-
Jeremy Reizenstein authored
Co-authored-by:Jeremy Francis Reizenstein <bottler@users.noreply.github.com>
-