1. 07 Apr, 2020 1 commit
    • Jeremy Reizenstein's avatar
      heterogenous KNN · 01b5f7b2
      Jeremy Reizenstein authored
      Summary: Interface and working implementation of ragged KNN. Benchmarks (which aren't ragged) haven't slowed. New benchmark shows that ragged is faster than non-ragged of the same shape.
      
      Reviewed By: jcjohnson
      
      Differential Revision: D20696507
      
      fbshipit-source-id: 21b80f71343a3475c8d3ee0ce2680f92f0fae4de
      01b5f7b2
  2. 29 Mar, 2020 2 commits
    • Patrick Labatut's avatar
      Address black + isort fbsource linter warnings · d57daa6f
      Patrick Labatut authored
      Summary: Address black + isort fbsource linter warnings from D20558374 (previous diff)
      
      Reviewed By: nikhilaravi
      
      Differential Revision: D20558373
      
      fbshipit-source-id: d3607de4a01fb24c0d5269634563a7914bddf1c8
      d57daa6f
    • Jeremy Reizenstein's avatar
      Linter, deprecated type() · 37c5c8e0
      Jeremy Reizenstein authored
      Summary: Run linter after recent changes. Fix long comment in knn.h which clang-format has reflowed badly. Add crude test that code doesn't call deprecated `.type()` or `.data()`.
      
      Reviewed By: nikhilaravi
      
      Differential Revision: D20692935
      
      fbshipit-source-id: 28ce0308adae79a870cb41a810b7cf8744f41ab8
      37c5c8e0
  3. 26 Mar, 2020 1 commit
    • Justin Johnson's avatar
      Implement K-Nearest Neighbors · 870290df
      Justin Johnson authored
      Summary:
      Implements K-Nearest Neighbors with C++ and CUDA versions.
      
      KNN in CUDA is highly nontrivial. I've implemented a few different versions of the kernel, and we heuristically dispatch to different kernels based on the problem size. Some of the kernels rely on template specialization on either D or K, so we use template metaprogramming to compile specialized versions for ranges of D and K.
      
      These kernels are up to 3x faster than our existing 1-nearest-neighbor kernels, so we should also consider swapping out `nn_points_idx` to use these kernels in the backend.
      
      I've been working mostly on the CUDA kernels, and haven't converged on the correct Python API.
      
      I still want to benchmark against FAISS to see how far away we are from their performance.
      
      Reviewed By: bottler
      
      Differential Revision: D19729286
      
      fbshipit-source-id: 608ffbb7030c21fe4008f330522f4890f0c3c21a
      870290df