Unverified Commit cdd2142d authored by Jeremy Reizenstein's avatar Jeremy Reizenstein Committed by GitHub
Browse files

implicitron v0 (#1133)


Co-authored-by: default avatarJeremy Francis Reizenstein <bottler@users.noreply.github.com>
parent 0e377c68
# Introduction
Implicitron is a PyTorch3D-based framework for new-view synthesis via modeling the neural-network based representations.
# License
Implicitron is distributed as part of PyTorch3D under the [BSD license](https://github.com/facebookresearch/pytorch3d/blob/main/LICENSE).
It includes code from [SRN](http://github.com/vsitzmann/scene-representation-networks) and [IDR](http://github.com/lioryariv/idr) repos.
See [LICENSE-3RD-PARTY](https://github.com/facebookresearch/pytorch3d/blob/main/LICENSE-3RD-PARTY) for their licenses.
# Installation
There are three ways to set up Implicitron, depending on the flexibility level required.
If you only want to train or evaluate models as they are implemented changing only the parameters, you can just install the package.
Implicitron also provides a flexible API that supports user-defined plug-ins;
if you want to re-implement some of the components without changing the high-level pipeline, you need to create a custom launcher script.
The most flexible option, though, is cloning PyTorch3D repo and building it from sources, which allows changing the code in arbitrary ways.
Below, we descibe all three options in more details.
## [Option 1] Running an executable from the package
This option allows you to use the code as is without changing the implementations.
Only configuration can be changed (see [Configuration system](#configuration-system)).
For this setup, install the dependencies and PyTorch3D from conda following [the guide](https://github.com/facebookresearch/pytorch3d/blob/master/INSTALL.md#1-install-with-cuda-support-from-anaconda-cloud-on-linux-only). Then, install implicitron-specific dependencies:
```shell
pip install "hydra-core>=1.1" visdom lpips matplotlib
```
Runner executable is available as `pytorch3d_implicitron_runner` shell command.
See [Running](#running) section below for examples of training and evaluation commands.
## [Option 2] Supporting custom implementations
To plug in custom implementations, for example, of renderer or implicit-function protocols, you need to create your own runner script and import the plug-in implementations there.
First, install PyTorch3D and Implicitron dependencies as described in the previous section.
Then, implement the custom script; copying `pytorch3d/projects/implicitron_trainer/experiment.py` is a good place to start.
See [Custom plugins](#custom-plugins) for more information on how to import implementations and enable them in the configs.
## [Option 3] Cloning PyTorch3D repo
This is the most flexible way to set up Implicitron as it allows changing the code directly.
It allows modifying the high-level rendering pipeline or implementing yet-unsupported loss functions.
Please follow the instructions to [install PyTorch3D from a local clone](https://github.com/facebookresearch/pytorch3d/blob/main/INSTALL.md#2-install-from-a-local-clone).
Then, install Implicitron-specific dependencies:
```shell
pip install "hydra-core>=1.1" visdom lpips matplotlib
```
You are still encouraged to implement custom plugins as above where possible as it makes reusing the code easier.
The executable is located in `pytorch3d/projects/implicitron_trainer`.
# Running
This section assumes that you use the executable provided by the installed package.
If you have a custom `experiment.py` script (as in the Option 2 above), replace the executable with the path to your script.
## Training
To run training, pass a yaml config file, followed by a list of overridden arguments.
For example, to train NeRF on the first skateboard sequence from CO3D dataset, you can run:
```shell
pytorch3d_implicitron_runner --config-path ./configs/ --config-name repro_singleseq_nerf dataset_args.dataset_root=<DATASET_ROOT> dataset_args.category='skateboard' dataset_args.test_restrict_sequence_id=0 test_when_finished=True exp_dir=<CHECKPOINT_DIR>
```
Here, `--config-path` points to the config path relative to `pytorch3d_implicitron_runner` location;
`--config-name` picks the config (in this case, `repro_singleseq_nerf.yaml`);
`test_when_finished` will launch evaluation script once training is finished.
Replace `<DATASET_ROOT>` with the location where the dataset in Implicitron format is stored
and `<CHECKPOINT_DIR>` with a directory where checkpoints will be dumped during training.
Other configuration parameters can be overridden in the same way.
See [Configuration system](#configuration-system) section for more information on this.
## Evaluation
To run evaluation on the latest checkpoint after (or during) training, simply add `eval_only=True` to your training command.
E.g. for executing the evaluation on the NeRF skateboard sequence, you can run:
```shell
pytorch3d_implicitron_runner --config-path ./configs/ --config-name repro_singleseq_nerf dataset_args.dataset_root=<CO3D_DATASET_ROOT> dataset_args.category='skateboard' dataset_args.test_restrict_sequence_id=0 exp_dir=<CHECKPOINT_DIR> eval_only=True
```
Evaluation prints the metrics to `stdout` and dumps them to a json file in `exp_dir`.
## Visualisation
The script produces a video of renders by a trained model assuming a pre-defined camera trajectory.
In order for it to work, `ffmpeg` needs to be installed:
```shell
conda install ffmpeg
```
Here is an example of calling the script:
```shell
projects/implicitron_trainer/visualize_reconstruction.py exp_dir=<CHECKPOINT_DIR> visdom_show_preds=True n_eval_cameras=40 render_size="[64,64]" video_size="[256,256]"
```
The argument `n_eval_cameras` sets the number of renderring viewpoints sampled on a trajectory, which defaults to a circular fly-around;
`render_size` sets the size of a render passed to the model, which can be resized to `video_size` before writing.
Rendered videos of images, masks, and depth maps will be saved to `<CHECKPOINT_DIR>/vis`.
# Configuration system
We use hydra and OmegaConf to parse the configs.
The config schema and default values are defined by the dataclasses implementing the modules.
More specifically, if a class derives from `Configurable`, its fields can be set in config yaml files or overridden in CLI.
For example, `GenericModel` has a field `render_image_width` with the default value 400.
If it is specified in the yaml config file or in CLI command, the new value will be used.
Configurables can form hierarchies.
For example, `GenericModel` has a field `raysampler: RaySampler`, which is also Configurable.
In the config, inner parameters can be propagated using `_args` postfix, e.g. to change `raysampler.n_pts_per_ray_training` (the number of sampled points per ray), the node `raysampler_args.n_pts_per_ray_training` should be specified.
The root of the hierarchy is defined by `ExperimentConfig` dataclass.
It has top-level fields like `eval_only` which was used above for running evaluation by adding a CLI override.
Additionally, it has non-leaf nodes like `generic_model_args`, which dispatches the config parameters to `GenericModel`. Thus, changing the model parameters may be achieved in two ways: either by editing the config file, e.g.
```yaml
generic_model_args:
render_image_width: 800
raysampler_args:
n_pts_per_ray_training: 128
```
or, equivalently, by adding the following to `pytorch3d_implicitron_runner` arguments:
```shell
generic_model_args.render_image_width=800 generic_model_args.raysampler_args.n_pts_per_ray_training=128
```
See the documentation in `pytorch3d/implicitron/tools/config.py` for more details.
## Replaceable implementations
Sometimes changing the model parameters does not provide enough flexibility, and you want to provide a new implementation for a building block.
The configuration system also supports it!
Abstract classes like `BaseRenderer` derive from `ReplaceableBase` instead of `Configurable`.
This means that other Configurables can refer to them using the base type, while the specific implementation is chosen in the config using `_class_type`-postfixed node.
In that case, `_args` node name has to include the implementation type.
More specifically, to change renderer settings, the config will look like this:
```yaml
generic_model_args:
renderer_class_type: LSTMRenderer
renderer_LSTMRenderer_args:
num_raymarch_steps: 10
hidden_size: 16
```
See the documentation in `pytorch3d/implicitron/tools/config.py` for more details on the configuration system.
## Custom plugins
If you have an idea for another implementation of a replaceable component, it can be plugged in without changing the core code.
For that, you need to set up Implicitron through option 2 or 3 above.
Let's say you want to implement a renderer that accumulates opacities similar to an X-ray machine.
First, create a module `x_ray_renderer.py` with a class deriving from `BaseRenderer`:
```python
from pytorch3d.implicitron.tools.config import registry
@registry.register
class XRayRenderer(BaseRenderer, torch.nn.Module):
n_pts_per_ray: int = 64
# if there are other base classes, make sure to call `super().__init__()` explicitly
def __post_init__(self):
super().__init__()
# custom initialization
def forward(
self,
ray_bundle,
implicit_functions=[],
evaluation_mode: EvaluationMode = EvaluationMode.EVALUATION,
**kwargs,
) -> RendererOutput:
...
```
Please note `@registry.register` decorator that registers the plug-in as an implementation of `Renderer`.
IMPORTANT: In order for it to run, the class (or its enclosing module) has to be imported in your launch script. Additionally, this has to be done before parsing the root configuration class `ExperimentConfig`.
Simply add `import .x_ray_renderer` in the beginning of `experiment.py`.
After that, you should be able to change the config with:
```yaml
generic_model_args:
renderer_class_type: XRayRenderer
renderer_XRayRenderer_args:
n_pts_per_ray: 128
```
to replace the implementation and potentially override the parameters.
# Code and config structure
As per above, the config structure is parsed automatically from the module hierarchy.
In particular, model parameters are contained in `generic_model_args` node, and dataset parameters in `dataset_args` node.
Here is the class structure (single-line edges show aggregation, while double lines show available implementations):
```
generic_model_args: GenericModel
└-- sequence_autodecoder_args: Autodecoder
└-- raysampler_args: RaySampler
└-- renderer_*_args: BaseRenderer
╘== MultiPassEmissionAbsorptionRenderer
╘== LSTMRenderer
╘== SignedDistanceFunctionRenderer
└-- ray_tracer_args: RayTracing
└-- ray_normal_coloring_network_args: RayNormalColoringNetwork
└-- implicit_function_*_args: ImplicitFunctionBase
╘== NeuralRadianceFieldImplicitFunction
╘== SRNImplicitFunction
└-- raymarch_function_args: SRNRaymarchFunction
└-- pixel_generator_args: SRNPixelGenerator
╘== SRNHyperNetImplicitFunction
└-- hypernet_args: SRNRaymarchHyperNet
└-- pixel_generator_args: SRNPixelGenerator
╘== IdrFeatureField
└-- image_feature_extractor_args: ResNetFeatureExtractor
└-- view_sampler_args: ViewSampler
└-- feature_aggregator_*_args: FeatureAggregatorBase
╘== IdentityFeatureAggregator
╘== AngleWeightedIdentityFeatureAggregator
╘== AngleWeightedReductionFeatureAggregator
╘== ReductionFeatureAggregator
solver_args: init_optimizer
dataset_args: dataset_zoo
dataloader_args: dataloader_zoo
```
Please look at the annotations of the respective classes or functions for the lists of hyperparameters.
# Reproducing CO3D experiments
Common Objects in 3D (CO3D) is a large-scale dataset of videos of rigid objects grouped into 50 common categories.
Implicitron provides implementations and config files to reproduce the results from [the paper](https://arxiv.org/abs/2109.00512).
Please follow [the link](https://github.com/facebookresearch/co3d#automatic-batch-download) for the instructions to download the dataset.
In training and evaluation scripts, use the download location as `<DATASET_ROOT>`.
It is also possible to define environment variable `CO3D_DATASET_ROOT` instead of specifying it.
To reproduce the experiments from the paper, use the following configs. For single-sequence experiments:
| Method | config file |
|-----------------|-------------------------------------|
| NeRF | repro_singleseq_nerf.yaml |
| NeRF + WCE | repro_singleseq_nerf_wce.yaml |
| NerFormer | repro_singleseq_nerformer.yaml |
| IDR | repro_singleseq_idr.yaml |
| SRN | repro_singleseq_srn_noharm.yaml |
| SRN + γ | repro_singleseq_srn.yaml |
| SRN + WCE | repro_singleseq_srn_wce_noharm.yaml |
| SRN + WCE + γ | repro_singleseq_srn_wce_noharm.yaml |
For multi-sequence experiments (without generalisation to new sequences):
| Method | config file |
|-----------------|--------------------------------------------|
| NeRF + AD | repro_multiseq_nerf_ad.yaml |
| SRN + AD | repro_multiseq_srn_ad_hypernet_noharm.yaml |
| SRN + γ + AD | repro_multiseq_srn_ad_hypernet.yaml |
For multi-sequence experiments (with generalisation to new sequences):
| Method | config file |
|-----------------|--------------------------------------|
| NeRF + WCE | repro_multiseq_nerf_wce.yaml |
| NerFormer | repro_multiseq_nerformer.yaml |
| SRN + WCE | repro_multiseq_srn_wce_noharm.yaml |
| SRN + WCE + γ | repro_multiseq_srn_wce.yaml |
defaults:
- default_config
- _self_
exp_dir: ./data/exps/base/
architecture: generic
visualize_interval: 0
visdom_port: 8097
dataloader_args:
batch_size: 10
dataset_len: 1000
dataset_len_val: 1
num_workers: 8
images_per_seq_options:
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
dataset_args:
dataset_root: ${oc.env:CO3D_DATASET_ROOT}"
load_point_clouds: false
mask_depths: false
mask_images: false
n_frames_per_sequence: -1
test_on_train: true
test_restrict_sequence_id: 0
generic_model_args:
loss_weights:
loss_mask_bce: 1.0
loss_prev_stage_mask_bce: 1.0
loss_autodecoder_norm: 0.01
loss_rgb_mse: 1.0
loss_prev_stage_rgb_mse: 1.0
output_rasterized_mc: false
chunk_size_grid: 102400
render_image_height: 400
render_image_width: 400
num_passes: 2
implicit_function_NeuralRadianceFieldImplicitFunction_args:
n_harmonic_functions_xyz: 10
n_harmonic_functions_dir: 4
n_hidden_neurons_xyz: 256
n_hidden_neurons_dir: 128
n_layers_xyz: 8
append_xyz:
- 5
latent_dim: 0
raysampler_args:
n_rays_per_image_sampled_from_mask: 1024
min_depth: 0.0
max_depth: 0.0
scene_extent: 8.0
n_pts_per_ray_training: 64
n_pts_per_ray_evaluation: 64
stratified_point_sampling_training: true
stratified_point_sampling_evaluation: false
renderer_MultiPassEmissionAbsorptionRenderer_args:
n_pts_per_ray_fine_training: 64
n_pts_per_ray_fine_evaluation: 64
append_coarse_samples_to_fine: true
density_noise_std_train: 1.0
view_sampler_args:
masked_sampling: false
image_feature_extractor_args:
stages:
- 1
- 2
- 3
- 4
proj_dim: 16
image_rescale: 0.32
first_max_pool: false
solver_args:
breed: adam
lr: 0.0005
lr_policy: multistep
max_epochs: 2000
momentum: 0.9
weight_decay: 0.0
generic_model_args:
image_feature_extractor_args:
add_images: true
add_masks: true
first_max_pool: true
image_rescale: 0.375
l2_norm: true
name: resnet34
normalize_image: true
pretrained: true
stages:
- 1
- 2
- 3
- 4
proj_dim: 32
generic_model_args:
image_feature_extractor_args:
add_images: true
add_masks: true
first_max_pool: false
image_rescale: 0.375
l2_norm: true
name: resnet34
normalize_image: true
pretrained: true
stages:
- 1
- 2
- 3
- 4
proj_dim: 16
generic_model_args:
image_feature_extractor_args:
stages:
- 1
- 2
- 3
first_max_pool: false
proj_dim: -1
l2_norm: false
image_rescale: 0.375
name: resnet34
normalize_image: true
pretrained: true
feature_aggregator_AngleWeightedReductionFeatureAggregator_args:
reduction_functions:
- AVG
defaults:
- repro_base.yaml
- _self_
dataloader_args:
batch_size: 10
dataset_len: 1000
dataset_len_val: 1
num_workers: 8
images_per_seq_options:
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
dataset_args:
assert_single_seq: false
dataset_name: co3d_multisequence
load_point_clouds: false
mask_depths: false
mask_images: false
n_frames_per_sequence: -1
test_on_train: true
test_restrict_sequence_id: 0
solver_args:
max_epochs: 3000
milestones:
- 1000
defaults:
- repro_multiseq_base.yaml
- _self_
generic_model_args:
loss_weights:
loss_mask_bce: 100.0
loss_kl: 0.0
loss_rgb_mse: 1.0
loss_eikonal: 0.1
chunk_size_grid: 65536
num_passes: 1
output_rasterized_mc: true
sampling_mode_training: mask_sample
view_pool: false
sequence_autodecoder_args:
n_instances: 20000
init_scale: 1.0
encoding_dim: 256
implicit_function_IdrFeatureField_args:
n_harmonic_functions_xyz: 6
bias: 0.6
d_in: 3
d_out: 1
dims:
- 512
- 512
- 512
- 512
- 512
- 512
- 512
- 512
geometric_init: true
pooled_feature_dim: 0
skip_in:
- 6
weight_norm: true
renderer_SignedDistanceFunctionRenderer_args:
ray_tracer_args:
line_search_step: 0.5
line_step_iters: 3
n_secant_steps: 8
n_steps: 100
object_bounding_sphere: 8.0
sdf_threshold: 5.0e-05
ray_normal_coloring_network_args:
d_in: 9
d_out: 3
dims:
- 512
- 512
- 512
- 512
mode: idr
n_harmonic_functions_dir: 4
pooled_feature_dim: 0
weight_norm: true
raysampler_args:
n_rays_per_image_sampled_from_mask: 1024
n_pts_per_ray_training: 0
n_pts_per_ray_evaluation: 0
scene_extent: 8.0
renderer_class_type: SignedDistanceFunctionRenderer
implicit_function_class_type: IdrFeatureField
defaults:
- repro_multiseq_base.yaml
- _self_
generic_model_args:
chunk_size_grid: 16000
view_pool: false
sequence_autodecoder_args:
n_instances: 20000
encoding_dim: 256
defaults:
- repro_multiseq_base.yaml
- repro_feat_extractor_unnormed.yaml
- _self_
clip_grad: 1.0
generic_model_args:
chunk_size_grid: 16000
view_pool: true
raysampler_args:
n_rays_per_image_sampled_from_mask: 850
defaults:
- repro_multiseq_base.yaml
- repro_feat_extractor_transformer.yaml
- _self_
generic_model_args:
chunk_size_grid: 16000
view_pool: true
raysampler_args:
n_rays_per_image_sampled_from_mask: 800
n_pts_per_ray_training: 32
n_pts_per_ray_evaluation: 32
renderer_MultiPassEmissionAbsorptionRenderer_args:
n_pts_per_ray_fine_training: 16
n_pts_per_ray_fine_evaluation: 16
implicit_function_class_type: NeRFormerImplicitFunction
feature_aggregator_class_type: IdentityFeatureAggregator
defaults:
- repro_multiseq_base.yaml
- repro_feat_extractor_transformer.yaml
- _self_
generic_model_args:
chunk_size_grid: 16000
view_pool: true
raysampler_args:
n_rays_per_image_sampled_from_mask: 800
n_pts_per_ray_training: 32
n_pts_per_ray_evaluation: 32
renderer_MultiPassEmissionAbsorptionRenderer_args:
n_pts_per_ray_fine_training: 16
n_pts_per_ray_fine_evaluation: 16
implicit_function_class_type: NeRFormerImplicitFunction
feature_aggregator_class_type: AngleWeightedIdentityFeatureAggregator
defaults:
- repro_multiseq_base.yaml
- _self_
generic_model_args:
chunk_size_grid: 16000
view_pool: false
n_train_target_views: -1
num_passes: 1
loss_weights:
loss_rgb_mse: 200.0
loss_prev_stage_rgb_mse: 0.0
loss_mask_bce: 1.0
loss_prev_stage_mask_bce: 0.0
loss_autodecoder_norm: 0.001
depth_neg_penalty: 10000.0
sequence_autodecoder_args:
encoding_dim: 256
n_instances: 20000
raysampler_args:
n_rays_per_image_sampled_from_mask: 2048
min_depth: 0.05
max_depth: 0.05
scene_extent: 0.0
n_pts_per_ray_training: 1
n_pts_per_ray_evaluation: 1
stratified_point_sampling_training: false
stratified_point_sampling_evaluation: false
renderer_class_type: LSTMRenderer
implicit_function_class_type: SRNHyperNetImplicitFunction
solver_args:
breed: adam
lr: 5.0e-05
defaults:
- repro_multiseq_srn_ad_hypernet.yaml
- _self_
generic_model_args:
num_passes: 1
implicit_function_SRNHyperNetImplicitFunction_args:
pixel_generator_args:
n_harmonic_functions: 0
hypernet_args:
n_harmonic_functions: 0
defaults:
- repro_multiseq_base.yaml
- repro_feat_extractor_normed.yaml
- _self_
generic_model_args:
chunk_size_grid: 32000
view_pool: true
num_passes: 1
n_train_target_views: -1
loss_weights:
loss_rgb_mse: 200.0
loss_prev_stage_rgb_mse: 0.0
loss_mask_bce: 1.0
loss_prev_stage_mask_bce: 0.0
loss_autodecoder_norm: 0.0
depth_neg_penalty: 10000.0
raysampler_args:
n_rays_per_image_sampled_from_mask: 2048
min_depth: 0.05
max_depth: 0.05
scene_extent: 0.0
n_pts_per_ray_training: 1
n_pts_per_ray_evaluation: 1
stratified_point_sampling_training: false
stratified_point_sampling_evaluation: false
renderer_class_type: LSTMRenderer
implicit_function_class_type: SRNImplicitFunction
solver_args:
breed: adam
lr: 5.0e-05
defaults:
- repro_multiseq_srn_wce.yaml
- _self_
generic_model_args:
num_passes: 1
implicit_function_SRNImplicitFunction_args:
pixel_generator_args:
n_harmonic_functions: 0
raymarch_function_args:
n_harmonic_functions: 0
defaults:
- repro_base
- _self_
dataloader_args:
batch_size: 1
dataset_len: 1000
dataset_len_val: 1
num_workers: 8
images_per_seq_options:
- 2
dataset_args:
dataset_name: co3d_singlesequence
assert_single_seq: true
n_frames_per_sequence: -1
test_restrict_sequence_id: 0
test_on_train: false
generic_model_args:
render_image_height: 800
render_image_width: 800
log_vars:
- loss_rgb_psnr_fg
- loss_rgb_psnr
- loss_eikonal
- loss_prev_stage_rgb_psnr
- loss_mask_bce
- loss_prev_stage_mask_bce
- loss_rgb_mse
- loss_prev_stage_rgb_mse
- loss_depth_abs
- loss_depth_abs_fg
- loss_kl
- loss_mask_neg_iou
- objective
- epoch
- sec/it
solver_args:
lr: 0.0005
max_epochs: 400
milestones:
- 200
- 300
defaults:
- repro_singleseq_base
- _self_
generic_model_args:
loss_weights:
loss_mask_bce: 100.0
loss_kl: 0.0
loss_rgb_mse: 1.0
loss_eikonal: 0.1
chunk_size_grid: 65536
num_passes: 1
view_pool: false
implicit_function_IdrFeatureField_args:
n_harmonic_functions_xyz: 6
bias: 0.6
d_in: 3
d_out: 1
dims:
- 512
- 512
- 512
- 512
- 512
- 512
- 512
- 512
geometric_init: true
pooled_feature_dim: 0
skip_in:
- 6
weight_norm: true
renderer_SignedDistanceFunctionRenderer_args:
ray_tracer_args:
line_search_step: 0.5
line_step_iters: 3
n_secant_steps: 8
n_steps: 100
object_bounding_sphere: 8.0
sdf_threshold: 5.0e-05
ray_normal_coloring_network_args:
d_in: 9
d_out: 3
dims:
- 512
- 512
- 512
- 512
mode: idr
n_harmonic_functions_dir: 4
pooled_feature_dim: 0
weight_norm: true
raysampler_args:
n_rays_per_image_sampled_from_mask: 1024
n_pts_per_ray_training: 0
n_pts_per_ray_evaluation: 0
renderer_class_type: SignedDistanceFunctionRenderer
implicit_function_class_type: IdrFeatureField
defaults:
- repro_singleseq_base
- _self_
exp_dir: ./data/nerf_single_apple/
defaults:
- repro_singleseq_wce_base.yaml
- repro_feat_extractor_unnormed.yaml
- _self_
generic_model_args:
chunk_size_grid: 16000
view_pool: true
raysampler_args:
n_rays_per_image_sampled_from_mask: 850
defaults:
- repro_singleseq_wce_base.yaml
- repro_feat_extractor_transformer.yaml
- _self_
generic_model_args:
chunk_size_grid: 16000
view_pool: true
implicit_function_class_type: NeRFormerImplicitFunction
raysampler_args:
n_rays_per_image_sampled_from_mask: 800
n_pts_per_ray_training: 32
n_pts_per_ray_evaluation: 32
renderer_MultiPassEmissionAbsorptionRenderer_args:
n_pts_per_ray_fine_training: 16
n_pts_per_ray_fine_evaluation: 16
feature_aggregator_class_type: IdentityFeatureAggregator
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment