Commit cb495504 authored by Krzysztof Chalupka's avatar Krzysztof Chalupka Committed by Facebook GitHub Bot
Browse files

Add MeshRasterizerOpenGL

Summary:
Adding MeshRasterizerOpenGL, a faster alternative to MeshRasterizer. The new rasterizer follows the ideas from "Differentiable Surface Rendering via non-Differentiable Sampling".

The new rasterizer 20x faster on a 2M face mesh (try pose optimization on Nefertiti from https://www.cs.cmu.edu/~kmcrane/Projects/ModelRepository/!). The larger the mesh, the larger the speedup.

There are two main disadvantages:
* The new rasterizer works with an OpenGL backend, so requires pycuda.gl and pyopengl installed (though we avoided writing any C++ code, everything is in Python!)
* The new rasterizer is non-differentiable. However, you can still differentiate the rendering function if you use if with the new SplatterPhongShader which we recently added to PyTorch3D (see the original paper cited above).

Reviewed By: patricklabatut, jcjohnson

Differential Revision: D37698816

fbshipit-source-id: 54d120639d3cb001f096237807e54aced0acda25
parent 36edf2b3
......@@ -26,8 +26,15 @@ class TestBuild(unittest.TestCase):
sys.modules.pop(module, None)
root_dir = get_pytorch3d_dir() / "pytorch3d"
# Exclude opengl-related files, as Implicitron is decoupled from opengl
# components which will not work without adding a dep on pytorch3d_opengl.
for module_file in root_dir.glob("**/*.py"):
if module_file.stem in ("__init__", "plotly_vis", "opengl_utils"):
if module_file.stem in (
"__init__",
"plotly_vis",
"opengl_utils",
"rasterizer_opengl",
):
continue
relative_module = str(module_file.relative_to(root_dir))[:-3]
module = "pytorch3d." + relative_module.replace("/", ".")
......
......@@ -11,15 +11,18 @@ import numpy as np
import torch
from PIL import Image
from pytorch3d.io import load_obj
from pytorch3d.renderer.cameras import FoVPerspectiveCameras, look_at_view_transform
from pytorch3d.renderer.lighting import PointLights
from pytorch3d.renderer.materials import Materials
from pytorch3d.renderer.mesh import (
from pytorch3d.renderer import (
BlendParams,
FoVPerspectiveCameras,
look_at_view_transform,
Materials,
MeshRasterizer,
MeshRasterizerOpenGL,
MeshRenderer,
PointLights,
RasterizationSettings,
SoftPhongShader,
SplatterPhongShader,
TexturesUV,
)
from pytorch3d.renderer.mesh.rasterize_meshes import (
......@@ -454,6 +457,12 @@ class TestRasterizeRectangleImagesMeshes(TestCaseMixin, unittest.TestCase):
)
def test_render_cow(self):
self._render_cow(MeshRasterizer)
def test_render_cow_opengl(self):
self._render_cow(MeshRasterizerOpenGL)
def _render_cow(self, rasterizer_type):
"""
Test a larger textured mesh is rendered correctly in a non square image.
"""
......@@ -473,38 +482,55 @@ class TestRasterizeRectangleImagesMeshes(TestCaseMixin, unittest.TestCase):
mesh = Meshes(verts=[verts], faces=[faces.verts_idx], textures=textures)
# Init rasterizer settings
R, T = look_at_view_transform(2.7, 0, 180)
R, T = look_at_view_transform(1.2, 0, 90)
cameras = FoVPerspectiveCameras(device=device, R=R, T=T)
raster_settings = RasterizationSettings(
image_size=(512, 1024), blur_radius=0.0, faces_per_pixel=1
image_size=(500, 800), blur_radius=0.0, faces_per_pixel=1
)
# Init shader settings
materials = Materials(device=device)
lights = PointLights(device=device)
lights.location = torch.tensor([0.0, 0.0, -2.0], device=device)[None]
# Init renderer
rasterizer = rasterizer_type(cameras=cameras, raster_settings=raster_settings)
if rasterizer_type == MeshRasterizer:
blend_params = BlendParams(
sigma=1e-1,
gamma=1e-4,
background_color=torch.tensor([1.0, 1.0, 1.0], device=device),
)
# Init renderer
renderer = MeshRenderer(
rasterizer=MeshRasterizer(cameras=cameras, raster_settings=raster_settings),
shader=SoftPhongShader(
shader = SoftPhongShader(
lights=lights,
cameras=cameras,
materials=materials,
blend_params=blend_params,
),
)
else:
blend_params = BlendParams(
sigma=0.5,
background_color=torch.tensor([1.0, 1.0, 1.0], device=device),
)
shader = SplatterPhongShader(
lights=lights,
cameras=cameras,
materials=materials,
blend_params=blend_params,
)
renderer = MeshRenderer(rasterizer=rasterizer, shader=shader)
# Load reference image
image_ref = load_rgb_image("test_cow_image_rectangle.png", DATA_DIR)
image_ref = load_rgb_image(
f"test_cow_image_rectangle_{rasterizer_type.__name__}.png", DATA_DIR
)
for bin_size in [0, None]:
if bin_size == 0 and rasterizer_type == MeshRasterizerOpenGL:
continue
# Check both naive and coarse to fine produce the same output.
renderer.rasterizer.raster_settings.bin_size = bin_size
images = renderer(mesh)
......@@ -512,7 +538,8 @@ class TestRasterizeRectangleImagesMeshes(TestCaseMixin, unittest.TestCase):
if DEBUG:
Image.fromarray((rgb.numpy() * 255).astype(np.uint8)).save(
DATA_DIR / "DEBUG_cow_image_rectangle.png"
DATA_DIR
/ f"DEBUG_cow_image_rectangle_{rasterizer_type.__name__}.png"
)
# NOTE some pixels can be flaky
......
......@@ -10,16 +10,29 @@ import unittest
import numpy as np
import torch
from PIL import Image
from pytorch3d.renderer.cameras import FoVPerspectiveCameras, look_at_view_transform
from pytorch3d.renderer.mesh.rasterizer import MeshRasterizer, RasterizationSettings
from pytorch3d.renderer.points.rasterizer import (
from pytorch3d.renderer import (
FoVOrthographicCameras,
FoVPerspectiveCameras,
look_at_view_transform,
MeshRasterizer,
MeshRasterizerOpenGL,
OrthographicCameras,
PerspectiveCameras,
PointsRasterizationSettings,
PointsRasterizer,
RasterizationSettings,
)
from pytorch3d.renderer.opengl.rasterizer_opengl import (
_check_cameras,
_check_raster_settings,
_convert_meshes_to_gl_ndc,
_parse_and_verify_image_size,
)
from pytorch3d.structures import Pointclouds
from pytorch3d.structures.meshes import Meshes
from pytorch3d.utils.ico_sphere import ico_sphere
from .common_testing import get_tests_dir
from .common_testing import get_tests_dir, TestCaseMixin
DATA_DIR = get_tests_dir() / "data"
......@@ -36,8 +49,14 @@ def convert_image_to_binary_mask(filename):
class TestMeshRasterizer(unittest.TestCase):
def test_simple_sphere(self):
self._simple_sphere(MeshRasterizer)
def test_simple_sphere_opengl(self):
self._simple_sphere(MeshRasterizerOpenGL)
def _simple_sphere(self, rasterizer_type):
device = torch.device("cuda:0")
ref_filename = "test_rasterized_sphere.png"
ref_filename = f"test_rasterized_sphere_{rasterizer_type.__name__}.png"
image_ref_filename = DATA_DIR / ref_filename
# Rescale image_ref to the 0 - 1 range and convert to a binary mask.
......@@ -54,7 +73,7 @@ class TestMeshRasterizer(unittest.TestCase):
)
# Init rasterizer
rasterizer = MeshRasterizer(cameras=cameras, raster_settings=raster_settings)
rasterizer = rasterizer_type(cameras=cameras, raster_settings=raster_settings)
####################################
# 1. Test rasterizing a single mesh
......@@ -68,7 +87,8 @@ class TestMeshRasterizer(unittest.TestCase):
if DEBUG:
Image.fromarray((image.numpy() * 255).astype(np.uint8)).save(
DATA_DIR / "DEBUG_test_rasterized_sphere.png"
DATA_DIR
/ f"DEBUG_test_rasterized_sphere_{rasterizer_type.__name__}.png"
)
self.assertTrue(torch.allclose(image, image_ref))
......@@ -90,20 +110,21 @@ class TestMeshRasterizer(unittest.TestCase):
# 3. Test that passing kwargs to rasterizer works.
####################################################
# Change the view transform to zoom in.
R, T = look_at_view_transform(2.0, 0, 0, device=device)
# Change the view transform to zoom out.
R, T = look_at_view_transform(20.0, 0, 0, device=device)
fragments = rasterizer(sphere_mesh, R=R, T=T)
image = fragments.pix_to_face[0, ..., 0].squeeze().cpu()
image[image >= 0] = 1.0
image[image < 0] = 0.0
ref_filename = "test_rasterized_sphere_zoom.png"
ref_filename = f"test_rasterized_sphere_zoom_{rasterizer_type.__name__}.png"
image_ref_filename = DATA_DIR / ref_filename
image_ref = convert_image_to_binary_mask(image_ref_filename)
if DEBUG:
Image.fromarray((image.numpy() * 255).astype(np.uint8)).save(
DATA_DIR / "DEBUG_test_rasterized_sphere_zoom.png"
DATA_DIR
/ f"DEBUG_test_rasterized_sphere_zoom_{rasterizer_type.__name__}.png"
)
self.assertTrue(torch.allclose(image, image_ref))
......@@ -112,7 +133,7 @@ class TestMeshRasterizer(unittest.TestCase):
##################################
# Create a new empty rasterizer:
rasterizer = MeshRasterizer()
rasterizer = rasterizer_type(raster_settings=raster_settings)
# Check that omitting the cameras in both initialization
# and the forward pass throws an error:
......@@ -120,9 +141,7 @@ class TestMeshRasterizer(unittest.TestCase):
rasterizer(sphere_mesh)
# Now pass in the cameras as a kwarg
fragments = rasterizer(
sphere_mesh, cameras=cameras, raster_settings=raster_settings
)
fragments = rasterizer(sphere_mesh, cameras=cameras)
image = fragments.pix_to_face[0, ..., 0].squeeze().cpu()
# Convert pix_to_face to a binary mask
image[image >= 0] = 1.0
......@@ -130,7 +149,8 @@ class TestMeshRasterizer(unittest.TestCase):
if DEBUG:
Image.fromarray((image.numpy() * 255).astype(np.uint8)).save(
DATA_DIR / "DEBUG_test_rasterized_sphere.png"
DATA_DIR
/ f"DEBUG_test_rasterized_sphere_{rasterizer_type.__name__}.png"
)
self.assertTrue(torch.allclose(image, image_ref))
......@@ -141,6 +161,187 @@ class TestMeshRasterizer(unittest.TestCase):
rasterizer = MeshRasterizer()
rasterizer.to(device)
rasterizer = MeshRasterizerOpenGL()
rasterizer.to(device)
def test_compare_rasterizers(self):
device = torch.device("cuda:0")
# Init rasterizer settings
R, T = look_at_view_transform(2.7, 0, 0)
cameras = FoVPerspectiveCameras(device=device, R=R, T=T)
raster_settings = RasterizationSettings(
image_size=512,
blur_radius=0.0,
faces_per_pixel=1,
bin_size=0,
perspective_correct=True,
)
from pytorch3d.io import load_obj
from pytorch3d.renderer import TexturesAtlas
from .common_testing import get_pytorch3d_dir
TUTORIAL_DATA_DIR = get_pytorch3d_dir() / "docs/tutorials/data"
obj_filename = TUTORIAL_DATA_DIR / "cow_mesh/cow.obj"
# Load mesh and texture as a per face texture atlas.
verts, faces, aux = load_obj(
obj_filename,
device=device,
load_textures=True,
create_texture_atlas=True,
texture_atlas_size=8,
texture_wrap=None,
)
atlas = aux.texture_atlas
mesh = Meshes(
verts=[verts],
faces=[faces.verts_idx],
textures=TexturesAtlas(atlas=[atlas]),
)
# Rasterize using both rasterizers and compare results.
rasterizer = MeshRasterizerOpenGL(
cameras=cameras, raster_settings=raster_settings
)
fragments_opengl = rasterizer(mesh)
rasterizer = MeshRasterizer(cameras=cameras, raster_settings=raster_settings)
fragments = rasterizer(mesh)
# Ensure that 99.9% of bary_coords is at most 0.001 different.
self.assertLess(
torch.quantile(
(fragments.bary_coords - fragments_opengl.bary_coords).abs(), 0.999
),
0.001,
)
# Ensure that 99.9% of zbuf vals is at most 0.001 different.
self.assertLess(
torch.quantile((fragments.zbuf - fragments_opengl.zbuf).abs(), 0.999), 0.001
)
# Ensure that 99.99% of pix_to_face is identical.
self.assertEqual(
torch.quantile(
(fragments.pix_to_face != fragments_opengl.pix_to_face).float(), 0.9999
),
0,
)
class TestMeshRasterizerOpenGLUtils(TestCaseMixin, unittest.TestCase):
def setUp(self):
verts = torch.tensor(
[[-1, 1, 0], [1, 1, 0], [1, -1, 0]], dtype=torch.float32
).cuda()
faces = torch.tensor([[0, 1, 2]]).cuda()
self.meshes_world = Meshes(verts=[verts], faces=[faces])
# Test various utils specific to the OpenGL rasterizer. Full "integration tests"
# live in test_render_meshes and test_render_multigpu.
def test_check_cameras(self):
_check_cameras(FoVPerspectiveCameras())
_check_cameras(FoVPerspectiveCameras())
with self.assertRaisesRegex(ValueError, "Cameras must be specified"):
_check_cameras(None)
with self.assertRaisesRegex(ValueError, "MeshRasterizerOpenGL only works with"):
_check_cameras(PerspectiveCameras())
with self.assertRaisesRegex(ValueError, "MeshRasterizerOpenGL only works with"):
_check_cameras(OrthographicCameras())
MeshRasterizerOpenGL(FoVPerspectiveCameras().cuda())(self.meshes_world)
MeshRasterizerOpenGL(FoVOrthographicCameras().cuda())(self.meshes_world)
MeshRasterizerOpenGL()(
self.meshes_world, cameras=FoVPerspectiveCameras().cuda()
)
with self.assertRaisesRegex(ValueError, "MeshRasterizerOpenGL only works with"):
MeshRasterizerOpenGL(PerspectiveCameras().cuda())(self.meshes_world)
with self.assertRaisesRegex(ValueError, "MeshRasterizerOpenGL only works with"):
MeshRasterizerOpenGL(OrthographicCameras().cuda())(self.meshes_world)
with self.assertRaisesRegex(ValueError, "Cameras must be specified"):
MeshRasterizerOpenGL()(self.meshes_world)
def test_check_raster_settings(self):
raster_settings = RasterizationSettings()
raster_settings.faces_per_pixel = 100
with self.assertWarnsRegex(UserWarning, ".* one face per pixel"):
_check_raster_settings(raster_settings)
with self.assertWarnsRegex(UserWarning, ".* one face per pixel"):
MeshRasterizerOpenGL(raster_settings=raster_settings)(
self.meshes_world, cameras=FoVPerspectiveCameras().cuda()
)
def test_convert_meshes_to_gl_ndc_square_img(self):
R, T = look_at_view_transform(1, 90, 180)
cameras = FoVOrthographicCameras(R=R, T=T).cuda()
meshes_gl_ndc = _convert_meshes_to_gl_ndc(
self.meshes_world, (100, 100), cameras
)
# After look_at_view_transform rotating 180 deg around z-axis, we recover
# the original coordinates. After additionally elevating the view by 90
# deg, we "zero out" the y-coordinate. Finally, we negate the x and y axes
# to adhere to OpenGL conventions (which go against the PyTorch3D convention).
self.assertClose(
meshes_gl_ndc.verts_list()[0],
torch.tensor(
[[-1, 0, 0], [1, 0, 0], [1, 0, 2]], dtype=torch.float32
).cuda(),
atol=1e-5,
)
def test_parse_and_verify_image_size(self):
img_size = _parse_and_verify_image_size(512)
self.assertEqual(img_size, (512, 512))
img_size = _parse_and_verify_image_size((2047, 10))
self.assertEqual(img_size, (2047, 10))
img_size = _parse_and_verify_image_size((10, 2047))
self.assertEqual(img_size, (10, 2047))
with self.assertRaisesRegex(ValueError, "Max rasterization size is"):
_parse_and_verify_image_size((2049, 512))
with self.assertRaisesRegex(ValueError, "Max rasterization size is"):
_parse_and_verify_image_size((512, 2049))
with self.assertRaisesRegex(ValueError, "Max rasterization size is"):
_parse_and_verify_image_size((2049, 2049))
rasterizer = MeshRasterizerOpenGL(FoVPerspectiveCameras().cuda())
raster_settings = RasterizationSettings()
raster_settings.image_size = 512
fragments = rasterizer(self.meshes_world, raster_settings=raster_settings)
self.assertEqual(fragments.pix_to_face.shape, torch.Size([1, 512, 512, 1]))
raster_settings.image_size = (2047, 10)
fragments = rasterizer(self.meshes_world, raster_settings=raster_settings)
self.assertEqual(fragments.pix_to_face.shape, torch.Size([1, 2047, 10, 1]))
raster_settings.image_size = (10, 2047)
fragments = rasterizer(self.meshes_world, raster_settings=raster_settings)
self.assertEqual(fragments.pix_to_face.shape, torch.Size([1, 10, 2047, 1]))
with self.assertRaisesRegex(ValueError, "Max rasterization size is"):
raster_settings.image_size = (2049, 512)
rasterizer(self.meshes_world, raster_settings=raster_settings)
with self.assertRaisesRegex(ValueError, "Max rasterization size is"):
raster_settings.image_size = (512, 2049)
rasterizer(self.meshes_world, raster_settings=raster_settings)
with self.assertRaisesRegex(ValueError, "Max rasterization size is"):
raster_settings.image_size = (2049, 2049)
rasterizer(self.meshes_world, raster_settings=raster_settings)
class TestPointRasterizer(unittest.TestCase):
def test_simple_sphere(self):
......
This diff is collapsed.
......@@ -14,6 +14,7 @@ from pytorch3d.renderer import (
HardGouraudShader,
Materials,
MeshRasterizer,
MeshRasterizerOpenGL,
MeshRenderer,
PointLights,
PointsRasterizationSettings,
......@@ -21,18 +22,19 @@ from pytorch3d.renderer import (
PointsRenderer,
RasterizationSettings,
SoftPhongShader,
SplatterPhongShader,
TexturesVertex,
)
from pytorch3d.renderer.cameras import FoVPerspectiveCameras, look_at_view_transform
from pytorch3d.structures import Meshes, Pointclouds
from pytorch3d.utils.ico_sphere import ico_sphere
from .common_testing import get_random_cuda_device, TestCaseMixin
from .common_testing import TestCaseMixin
# Set the number of GPUS you want to test with
NUM_GPUS = 3
GPU_LIST = list({get_random_cuda_device() for _ in range(NUM_GPUS)})
NUM_GPUS = 2
GPU_LIST = [f"cuda:{idx}" for idx in range(NUM_GPUS)]
print("GPUs: %s" % ", ".join(GPU_LIST))
......@@ -56,12 +58,12 @@ class TestRenderMeshesMultiGPU(TestCaseMixin, unittest.TestCase):
self.assertEqual(renderer.shader.materials.device, device)
self.assertEqual(renderer.shader.materials.ambient_color.device, device)
def test_mesh_renderer_to(self):
def _mesh_renderer_to(self, rasterizer_class, shader_class):
"""
Test moving all the tensors in the mesh renderer to a new device.
"""
device1 = torch.device("cpu")
device1 = torch.device("cuda:0")
R, T = look_at_view_transform(1500, 0.0, 0.0)
......@@ -71,12 +73,12 @@ class TestRenderMeshesMultiGPU(TestCaseMixin, unittest.TestCase):
lights.location = torch.tensor([0.0, 0.0, +1000.0], device=device1)[None]
raster_settings = RasterizationSettings(
image_size=256, blur_radius=0.0, faces_per_pixel=1
image_size=128, blur_radius=0.0, faces_per_pixel=1
)
cameras = FoVPerspectiveCameras(
device=device1, R=R, T=T, aspect_ratio=1.0, fov=60.0, zfar=100
)
rasterizer = MeshRasterizer(cameras=cameras, raster_settings=raster_settings)
rasterizer = rasterizer_class(cameras=cameras, raster_settings=raster_settings)
blend_params = BlendParams(
1e-4,
......@@ -84,7 +86,7 @@ class TestRenderMeshesMultiGPU(TestCaseMixin, unittest.TestCase):
background_color=torch.zeros(3, dtype=torch.float32, device=device1),
)
shader = SoftPhongShader(
shader = shader_class(
lights=lights,
cameras=cameras,
materials=materials,
......@@ -107,26 +109,32 @@ class TestRenderMeshesMultiGPU(TestCaseMixin, unittest.TestCase):
# Move renderer and mesh to another device and re render
# This also tests that background_color is correctly moved to
# the new device
device2 = torch.device("cuda:0")
device2 = torch.device("cuda:1")
renderer = renderer.to(device2)
mesh = mesh.to(device2)
self._check_mesh_renderer_props_on_device(renderer, device2)
output_images = renderer(mesh)
self.assertEqual(output_images.device, device2)
def test_render_meshes(self):
def test_mesh_renderer_to(self):
self._mesh_renderer_to(MeshRasterizer, SoftPhongShader)
def test_mesh_renderer_opengl_to(self):
self._mesh_renderer_to(MeshRasterizerOpenGL, SplatterPhongShader)
def _render_meshes(self, rasterizer_class, shader_class):
test = self
class Model(nn.Module):
def __init__(self):
def __init__(self, device):
super(Model, self).__init__()
mesh = ico_sphere(3)
mesh = ico_sphere(3).to(device)
self.register_buffer("faces", mesh.faces_padded())
self.renderer = self.init_render()
self.renderer = self.init_render(device)
def init_render(self):
def init_render(self, device):
cameras = FoVPerspectiveCameras()
cameras = FoVPerspectiveCameras().to(device)
raster_settings = RasterizationSettings(
image_size=128, blur_radius=0.0, faces_per_pixel=1
)
......@@ -135,12 +143,12 @@ class TestRenderMeshesMultiGPU(TestCaseMixin, unittest.TestCase):
diffuse_color=((0, 0.0, 0),),
specular_color=((0.0, 0, 0),),
location=((0.0, 0.0, 1e5),),
)
).to(device)
renderer = MeshRenderer(
rasterizer=MeshRasterizer(
rasterizer=rasterizer_class(
cameras=cameras, raster_settings=raster_settings
),
shader=HardGouraudShader(cameras=cameras, lights=lights),
shader=shader_class(cameras=cameras, lights=lights),
)
return renderer
......@@ -155,20 +163,25 @@ class TestRenderMeshesMultiGPU(TestCaseMixin, unittest.TestCase):
img_render = self.renderer(mesh)
return img_render[:, :, :, :3]
# DataParallel requires every input tensor be provided
# on the first device in its device_ids list.
verts = ico_sphere(3).verts_padded()
# Make sure we use all GPUs in GPU_LIST by making the batch size 4 x GPU count.
verts = ico_sphere(3).verts_padded().expand(len(GPU_LIST) * 4, 642, 3)
texs = verts.new_ones(verts.shape)
model = Model()
model.to(GPU_LIST[0])
model = Model(device=GPU_LIST[0])
model = nn.DataParallel(model, device_ids=GPU_LIST)
# Test a few iterations
for _ in range(100):
model(verts, texs)
def test_render_meshes(self):
self._render_meshes(MeshRasterizer, HardGouraudShader)
# @unittest.skip("Multi-GPU OpenGL training is currently not supported.")
def test_render_meshes_opengl(self):
self._render_meshes(MeshRasterizerOpenGL, SplatterPhongShader)
class TestRenderPointssMultiGPU(TestCaseMixin, unittest.TestCase):
class TestRenderPointsMultiGPU(TestCaseMixin, unittest.TestCase):
def _check_points_renderer_props_on_device(self, renderer, device):
"""
Helper function to check that all the properties have
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment