Commit 3da7703c authored by Amethyst Reese's avatar Amethyst Reese Committed by Facebook GitHub Bot
Browse files

apply Black 2024 style in fbcode (4/16)

Summary:
Formats the covered files with pyfmt.

paintitblack

Reviewed By: aleivag

Differential Revision: D54447727

fbshipit-source-id: 8844b1caa08de94d04ac4df3c768dbf8c865fd2f
parent f34104cf
......@@ -343,12 +343,14 @@ class RadianceFieldRenderer(torch.nn.Module):
# For a full render pass concatenate the output chunks,
# and reshape to image size.
out = {
k: torch.cat(
k: (
torch.cat(
[ch_o[k] for ch_o in chunk_outputs],
dim=1,
).view(-1, *self._image_size, 3)
if chunk_outputs[0][k] is not None
else None
)
for k in ("rgb_fine", "rgb_coarse", "rgb_gt")
}
else:
......
......@@ -576,11 +576,11 @@ class GenericFrameDataBuilder(FrameDataBuilderBase[FrameDataSubtype], ABC):
camera_quality_score=safe_as_tensor(
sequence_annotation.viewpoint_quality_score, torch.float
),
point_cloud_quality_score=safe_as_tensor(
point_cloud.quality_score, torch.float
)
point_cloud_quality_score=(
safe_as_tensor(point_cloud.quality_score, torch.float)
if point_cloud is not None
else None,
else None
),
)
fg_mask_np: Optional[np.ndarray] = None
......
......@@ -124,9 +124,9 @@ class JsonIndexDataset(DatasetBase, ReplaceableBase):
dimension of the cropping bounding box, relative to box size.
"""
frame_annotations_type: ClassVar[
Type[types.FrameAnnotation]
] = types.FrameAnnotation
frame_annotations_type: ClassVar[Type[types.FrameAnnotation]] = (
types.FrameAnnotation
)
path_manager: Any = None
frame_annotations_file: str = ""
......
......@@ -88,9 +88,11 @@ def get_implicitron_sequence_pointcloud(
frame_data.camera,
frame_data.image_rgb,
frame_data.depth_map,
(
(cast(torch.Tensor, frame_data.fg_probability) > 0.5).float()
if mask_points and frame_data.fg_probability is not None
else None,
else None
),
)
return point_cloud, frame_data
......@@ -282,9 +282,9 @@ def eval_batch(
image_rgb_masked=image_rgb_masked,
depth_render=cloned_render["depth_render"],
depth_map=frame_data.depth_map,
depth_mask=frame_data.depth_mask[:1]
if frame_data.depth_mask is not None
else None,
depth_mask=(
frame_data.depth_mask[:1] if frame_data.depth_mask is not None else None
),
visdom_env=visualize_visdom_env,
)
......
......@@ -395,10 +395,12 @@ class GenericModel(ImplicitronModelBase): # pyre-ignore: 13
n_targets = (
1
if evaluation_mode == EvaluationMode.EVALUATION
else batch_size
else (
batch_size
if self.n_train_target_views <= 0
else min(self.n_train_target_views, batch_size)
)
)
# A helper function for selecting n_target first elements from the input
# where the latter can be None.
......@@ -422,9 +424,12 @@ class GenericModel(ImplicitronModelBase): # pyre-ignore: 13
ray_bundle: ImplicitronRayBundle = self.raysampler(
target_cameras,
evaluation_mode,
mask=mask_crop[:n_targets]
if mask_crop is not None and sampling_mode == RenderSamplingMode.MASK_SAMPLE
else None,
mask=(
mask_crop[:n_targets]
if mask_crop is not None
and sampling_mode == RenderSamplingMode.MASK_SAMPLE
else None
),
)
# custom_args hold additional arguments to the implicit function.
......
......@@ -102,9 +102,7 @@ class IdrFeatureField(ImplicitFunctionBase, torch.nn.Module):
elif self.n_harmonic_functions_xyz >= 0 and layer_idx == 0:
torch.nn.init.constant_(lin.bias, 0.0)
torch.nn.init.constant_(lin.weight[:, 3:], 0.0)
torch.nn.init.normal_(
lin.weight[:, :3], 0.0, 2**0.5 / out_dim**0.5
)
torch.nn.init.normal_(lin.weight[:, :3], 0.0, 2**0.5 / out_dim**0.5)
elif self.n_harmonic_functions_xyz >= 0 and layer_idx in self.skip_in:
torch.nn.init.constant_(lin.bias, 0.0)
torch.nn.init.normal_(lin.weight, 0.0, 2**0.5 / out_dim**0.5)
......
......@@ -193,9 +193,9 @@ class NeuralRadianceFieldBase(ImplicitFunctionBase, torch.nn.Module):
embeds = create_embeddings_for_implicit_function(
xyz_world=rays_points_world,
# for 2nd param but got `Union[None, torch.Tensor, torch.nn.Module]`.
xyz_embedding_function=self.harmonic_embedding_xyz
if self.input_xyz
else None,
xyz_embedding_function=(
self.harmonic_embedding_xyz if self.input_xyz else None
),
global_code=global_code,
fun_viewpool=fun_viewpool,
xyz_in_camera_coords=self.xyz_ray_dir_in_camera_coords,
......
......@@ -356,9 +356,12 @@ class OverfitModel(ImplicitronModelBase): # pyre-ignore: 13
ray_bundle: ImplicitronRayBundle = self.raysampler(
camera,
evaluation_mode,
mask=mask_crop
if mask_crop is not None and sampling_mode == RenderSamplingMode.MASK_SAMPLE
else None,
mask=(
mask_crop
if mask_crop is not None
and sampling_mode == RenderSamplingMode.MASK_SAMPLE
else None
),
)
inputs_to_be_chunked = {}
......@@ -381,11 +384,13 @@ class OverfitModel(ImplicitronModelBase): # pyre-ignore: 13
frame_timestamp=frame_timestamp,
)
implicit_functions = [
(
functools.partial(implicit_function, global_code=global_code)
if isinstance(implicit_function, Callable)
else functools.partial(
implicit_function.forward, global_code=global_code
)
)
for implicit_function in implicit_functions
]
rendered = self._render(
......
......@@ -145,10 +145,12 @@ class AbstractMaskRaySampler(RaySamplerBase, torch.nn.Module):
n_pts_per_ray=n_pts_per_ray_training,
min_depth=0.0,
max_depth=0.0,
n_rays_per_image=self.n_rays_per_image_sampled_from_mask
n_rays_per_image=(
self.n_rays_per_image_sampled_from_mask
if self._sampling_mode[EvaluationMode.TRAINING]
== RenderSamplingMode.MASK_SAMPLE
else None,
else None
),
n_rays_total=self.n_rays_total_training,
unit_directions=True,
stratified_sampling=self.stratified_point_sampling_training,
......@@ -160,10 +162,12 @@ class AbstractMaskRaySampler(RaySamplerBase, torch.nn.Module):
n_pts_per_ray=n_pts_per_ray_evaluation,
min_depth=0.0,
max_depth=0.0,
n_rays_per_image=self.n_rays_per_image_sampled_from_mask
n_rays_per_image=(
self.n_rays_per_image_sampled_from_mask
if self._sampling_mode[EvaluationMode.EVALUATION]
== RenderSamplingMode.MASK_SAMPLE
else None,
else None
),
unit_directions=True,
stratified_sampling=self.stratified_point_sampling_evaluation,
)
......
......@@ -415,7 +415,7 @@ class RayTracing(Configurable, nn.Module):
]
sampler_dists[mask_intersect_idx[p_out_mask]] = pts_intervals[
p_out_mask,
:
:,
# pyre-fixme[6]: For 1st param expected `Union[bool, float, int]` but
# got `Tensor`.
][torch.arange(n_p_out), out_pts_idx]
......
......@@ -43,9 +43,9 @@ class SignedDistanceFunctionRenderer(BaseRenderer, torch.nn.Module): # pyre-ign
run_auto_creation(self)
self.ray_normal_coloring_network_args[
"feature_vector_size"
] = render_features_dimensions
self.ray_normal_coloring_network_args["feature_vector_size"] = (
render_features_dimensions
)
self._rgb_network = RayNormalColoringNetwork(
**self.ray_normal_coloring_network_args
)
......@@ -201,9 +201,8 @@ class SignedDistanceFunctionRenderer(BaseRenderer, torch.nn.Module): # pyre-ign
None, :, 0, :
]
normals_full.view(-1, 3)[surface_mask] = normals
render_full.view(-1, self.render_features_dimensions)[
surface_mask
] = self._rgb_network(
render_full.view(-1, self.render_features_dimensions)[surface_mask] = (
self._rgb_network(
features,
differentiable_surface_points[None],
normals,
......@@ -211,6 +210,7 @@ class SignedDistanceFunctionRenderer(BaseRenderer, torch.nn.Module): # pyre-ign
surface_mask[None, :, None],
pooling_fn=None, # TODO
)
)
mask_full.view(-1, 1)[~surface_mask] = torch.sigmoid(
# pyre-fixme[6]: For 1st param expected `Tensor` but got `float`.
-self.soft_mask_alpha
......
......@@ -241,9 +241,9 @@ class _Registry:
"""
def __init__(self) -> None:
self._mapping: Dict[
Type[ReplaceableBase], Dict[str, Type[ReplaceableBase]]
] = defaultdict(dict)
self._mapping: Dict[Type[ReplaceableBase], Dict[str, Type[ReplaceableBase]]] = (
defaultdict(dict)
)
def register(self, some_class: Type[_X]) -> Type[_X]:
"""
......
......@@ -139,9 +139,11 @@ def generate_eval_video_cameras(
fit = fit_circle_in_3d(
cam_centers,
angles=angle,
offset=angle.new_tensor(traj_offset_canonical)
offset=(
angle.new_tensor(traj_offset_canonical)
if traj_offset_canonical is not None
else None,
else None
),
up=angle.new_tensor(up),
)
traj = fit.generated_points
......
......@@ -146,9 +146,11 @@ def cat_dataclass(batch, tensor_collator: Callable):
)
elif isinstance(elem_f, collections.abc.Mapping):
collated[f.name] = {
k: tensor_collator([getattr(e, f.name)[k] for e in batch])
k: (
tensor_collator([getattr(e, f.name)[k] for e in batch])
if elem_f[k] is not None
else None
)
for k in elem_f
}
else:
......
......@@ -81,7 +81,6 @@ class FishEyeCameras(CamerasBase):
device: Device = "cpu",
image_size: Optional[Union[List, Tuple, torch.Tensor]] = None,
) -> None:
"""
Args:
......
......@@ -712,9 +712,9 @@ def convert_clipped_rasterization_to_original_faces(
)
bary_coords_unclipped_subset = bary_coords_unclipped_subset.reshape([N * 3])
bary_coords_unclipped[
faces_to_convert_mask_expanded
] = bary_coords_unclipped_subset
bary_coords_unclipped[faces_to_convert_mask_expanded] = (
bary_coords_unclipped_subset
)
# dists for case 4 faces will be handled in the rasterizer
# so no need to modify them here.
......
......@@ -605,7 +605,10 @@ def rasterize_meshes_python( # noqa: C901
# If faces were clipped, map the rasterization result to be in terms of the
# original unclipped faces. This may involve converting barycentric
# coordinates
(face_idxs, bary_coords,) = convert_clipped_rasterization_to_original_faces(
(
face_idxs,
bary_coords,
) = convert_clipped_rasterization_to_original_faces(
face_idxs,
bary_coords,
# pyre-fixme[61]: `clipped_faces` may not be initialized here.
......
......@@ -4,6 +4,7 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# If we can access EGL, import MeshRasterizerOpenGL.
def _can_import_egl_and_pycuda():
import os
......
......@@ -292,9 +292,11 @@ class _OpenGLMachinery:
pix_to_face, bary_coord, zbuf = self._rasterize_mesh(
mesh,
image_size,
projection_matrix=projection_matrix[mesh_id]
projection_matrix=(
projection_matrix[mesh_id]
if projection_matrix.shape[0] > 1
else None,
else None
),
)
pix_to_faces.append(pix_to_face)
bary_coords.append(bary_coord)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment