Commit 3da7703c authored by Amethyst Reese's avatar Amethyst Reese Committed by Facebook GitHub Bot
Browse files

apply Black 2024 style in fbcode (4/16)

Summary:
Formats the covered files with pyfmt.

paintitblack

Reviewed By: aleivag

Differential Revision: D54447727

fbshipit-source-id: 8844b1caa08de94d04ac4df3c768dbf8c865fd2f
parent f34104cf
...@@ -343,12 +343,14 @@ class RadianceFieldRenderer(torch.nn.Module): ...@@ -343,12 +343,14 @@ class RadianceFieldRenderer(torch.nn.Module):
# For a full render pass concatenate the output chunks, # For a full render pass concatenate the output chunks,
# and reshape to image size. # and reshape to image size.
out = { out = {
k: torch.cat( k: (
[ch_o[k] for ch_o in chunk_outputs], torch.cat(
dim=1, [ch_o[k] for ch_o in chunk_outputs],
).view(-1, *self._image_size, 3) dim=1,
if chunk_outputs[0][k] is not None ).view(-1, *self._image_size, 3)
else None if chunk_outputs[0][k] is not None
else None
)
for k in ("rgb_fine", "rgb_coarse", "rgb_gt") for k in ("rgb_fine", "rgb_coarse", "rgb_gt")
} }
else: else:
......
...@@ -576,11 +576,11 @@ class GenericFrameDataBuilder(FrameDataBuilderBase[FrameDataSubtype], ABC): ...@@ -576,11 +576,11 @@ class GenericFrameDataBuilder(FrameDataBuilderBase[FrameDataSubtype], ABC):
camera_quality_score=safe_as_tensor( camera_quality_score=safe_as_tensor(
sequence_annotation.viewpoint_quality_score, torch.float sequence_annotation.viewpoint_quality_score, torch.float
), ),
point_cloud_quality_score=safe_as_tensor( point_cloud_quality_score=(
point_cloud.quality_score, torch.float safe_as_tensor(point_cloud.quality_score, torch.float)
) if point_cloud is not None
if point_cloud is not None else None
else None, ),
) )
fg_mask_np: Optional[np.ndarray] = None fg_mask_np: Optional[np.ndarray] = None
......
...@@ -124,9 +124,9 @@ class JsonIndexDataset(DatasetBase, ReplaceableBase): ...@@ -124,9 +124,9 @@ class JsonIndexDataset(DatasetBase, ReplaceableBase):
dimension of the cropping bounding box, relative to box size. dimension of the cropping bounding box, relative to box size.
""" """
frame_annotations_type: ClassVar[ frame_annotations_type: ClassVar[Type[types.FrameAnnotation]] = (
Type[types.FrameAnnotation] types.FrameAnnotation
] = types.FrameAnnotation )
path_manager: Any = None path_manager: Any = None
frame_annotations_file: str = "" frame_annotations_file: str = ""
......
...@@ -88,9 +88,11 @@ def get_implicitron_sequence_pointcloud( ...@@ -88,9 +88,11 @@ def get_implicitron_sequence_pointcloud(
frame_data.camera, frame_data.camera,
frame_data.image_rgb, frame_data.image_rgb,
frame_data.depth_map, frame_data.depth_map,
(cast(torch.Tensor, frame_data.fg_probability) > 0.5).float() (
if mask_points and frame_data.fg_probability is not None (cast(torch.Tensor, frame_data.fg_probability) > 0.5).float()
else None, if mask_points and frame_data.fg_probability is not None
else None
),
) )
return point_cloud, frame_data return point_cloud, frame_data
...@@ -282,9 +282,9 @@ def eval_batch( ...@@ -282,9 +282,9 @@ def eval_batch(
image_rgb_masked=image_rgb_masked, image_rgb_masked=image_rgb_masked,
depth_render=cloned_render["depth_render"], depth_render=cloned_render["depth_render"],
depth_map=frame_data.depth_map, depth_map=frame_data.depth_map,
depth_mask=frame_data.depth_mask[:1] depth_mask=(
if frame_data.depth_mask is not None frame_data.depth_mask[:1] if frame_data.depth_mask is not None else None
else None, ),
visdom_env=visualize_visdom_env, visdom_env=visualize_visdom_env,
) )
......
...@@ -395,9 +395,11 @@ class GenericModel(ImplicitronModelBase): # pyre-ignore: 13 ...@@ -395,9 +395,11 @@ class GenericModel(ImplicitronModelBase): # pyre-ignore: 13
n_targets = ( n_targets = (
1 1
if evaluation_mode == EvaluationMode.EVALUATION if evaluation_mode == EvaluationMode.EVALUATION
else batch_size else (
if self.n_train_target_views <= 0 batch_size
else min(self.n_train_target_views, batch_size) if self.n_train_target_views <= 0
else min(self.n_train_target_views, batch_size)
)
) )
# A helper function for selecting n_target first elements from the input # A helper function for selecting n_target first elements from the input
...@@ -422,9 +424,12 @@ class GenericModel(ImplicitronModelBase): # pyre-ignore: 13 ...@@ -422,9 +424,12 @@ class GenericModel(ImplicitronModelBase): # pyre-ignore: 13
ray_bundle: ImplicitronRayBundle = self.raysampler( ray_bundle: ImplicitronRayBundle = self.raysampler(
target_cameras, target_cameras,
evaluation_mode, evaluation_mode,
mask=mask_crop[:n_targets] mask=(
if mask_crop is not None and sampling_mode == RenderSamplingMode.MASK_SAMPLE mask_crop[:n_targets]
else None, if mask_crop is not None
and sampling_mode == RenderSamplingMode.MASK_SAMPLE
else None
),
) )
# custom_args hold additional arguments to the implicit function. # custom_args hold additional arguments to the implicit function.
......
...@@ -102,9 +102,7 @@ class IdrFeatureField(ImplicitFunctionBase, torch.nn.Module): ...@@ -102,9 +102,7 @@ class IdrFeatureField(ImplicitFunctionBase, torch.nn.Module):
elif self.n_harmonic_functions_xyz >= 0 and layer_idx == 0: elif self.n_harmonic_functions_xyz >= 0 and layer_idx == 0:
torch.nn.init.constant_(lin.bias, 0.0) torch.nn.init.constant_(lin.bias, 0.0)
torch.nn.init.constant_(lin.weight[:, 3:], 0.0) torch.nn.init.constant_(lin.weight[:, 3:], 0.0)
torch.nn.init.normal_( torch.nn.init.normal_(lin.weight[:, :3], 0.0, 2**0.5 / out_dim**0.5)
lin.weight[:, :3], 0.0, 2**0.5 / out_dim**0.5
)
elif self.n_harmonic_functions_xyz >= 0 and layer_idx in self.skip_in: elif self.n_harmonic_functions_xyz >= 0 and layer_idx in self.skip_in:
torch.nn.init.constant_(lin.bias, 0.0) torch.nn.init.constant_(lin.bias, 0.0)
torch.nn.init.normal_(lin.weight, 0.0, 2**0.5 / out_dim**0.5) torch.nn.init.normal_(lin.weight, 0.0, 2**0.5 / out_dim**0.5)
......
...@@ -193,9 +193,9 @@ class NeuralRadianceFieldBase(ImplicitFunctionBase, torch.nn.Module): ...@@ -193,9 +193,9 @@ class NeuralRadianceFieldBase(ImplicitFunctionBase, torch.nn.Module):
embeds = create_embeddings_for_implicit_function( embeds = create_embeddings_for_implicit_function(
xyz_world=rays_points_world, xyz_world=rays_points_world,
# for 2nd param but got `Union[None, torch.Tensor, torch.nn.Module]`. # for 2nd param but got `Union[None, torch.Tensor, torch.nn.Module]`.
xyz_embedding_function=self.harmonic_embedding_xyz xyz_embedding_function=(
if self.input_xyz self.harmonic_embedding_xyz if self.input_xyz else None
else None, ),
global_code=global_code, global_code=global_code,
fun_viewpool=fun_viewpool, fun_viewpool=fun_viewpool,
xyz_in_camera_coords=self.xyz_ray_dir_in_camera_coords, xyz_in_camera_coords=self.xyz_ray_dir_in_camera_coords,
......
...@@ -356,9 +356,12 @@ class OverfitModel(ImplicitronModelBase): # pyre-ignore: 13 ...@@ -356,9 +356,12 @@ class OverfitModel(ImplicitronModelBase): # pyre-ignore: 13
ray_bundle: ImplicitronRayBundle = self.raysampler( ray_bundle: ImplicitronRayBundle = self.raysampler(
camera, camera,
evaluation_mode, evaluation_mode,
mask=mask_crop mask=(
if mask_crop is not None and sampling_mode == RenderSamplingMode.MASK_SAMPLE mask_crop
else None, if mask_crop is not None
and sampling_mode == RenderSamplingMode.MASK_SAMPLE
else None
),
) )
inputs_to_be_chunked = {} inputs_to_be_chunked = {}
...@@ -381,10 +384,12 @@ class OverfitModel(ImplicitronModelBase): # pyre-ignore: 13 ...@@ -381,10 +384,12 @@ class OverfitModel(ImplicitronModelBase): # pyre-ignore: 13
frame_timestamp=frame_timestamp, frame_timestamp=frame_timestamp,
) )
implicit_functions = [ implicit_functions = [
functools.partial(implicit_function, global_code=global_code) (
if isinstance(implicit_function, Callable) functools.partial(implicit_function, global_code=global_code)
else functools.partial( if isinstance(implicit_function, Callable)
implicit_function.forward, global_code=global_code else functools.partial(
implicit_function.forward, global_code=global_code
)
) )
for implicit_function in implicit_functions for implicit_function in implicit_functions
] ]
......
...@@ -145,10 +145,12 @@ class AbstractMaskRaySampler(RaySamplerBase, torch.nn.Module): ...@@ -145,10 +145,12 @@ class AbstractMaskRaySampler(RaySamplerBase, torch.nn.Module):
n_pts_per_ray=n_pts_per_ray_training, n_pts_per_ray=n_pts_per_ray_training,
min_depth=0.0, min_depth=0.0,
max_depth=0.0, max_depth=0.0,
n_rays_per_image=self.n_rays_per_image_sampled_from_mask n_rays_per_image=(
if self._sampling_mode[EvaluationMode.TRAINING] self.n_rays_per_image_sampled_from_mask
== RenderSamplingMode.MASK_SAMPLE if self._sampling_mode[EvaluationMode.TRAINING]
else None, == RenderSamplingMode.MASK_SAMPLE
else None
),
n_rays_total=self.n_rays_total_training, n_rays_total=self.n_rays_total_training,
unit_directions=True, unit_directions=True,
stratified_sampling=self.stratified_point_sampling_training, stratified_sampling=self.stratified_point_sampling_training,
...@@ -160,10 +162,12 @@ class AbstractMaskRaySampler(RaySamplerBase, torch.nn.Module): ...@@ -160,10 +162,12 @@ class AbstractMaskRaySampler(RaySamplerBase, torch.nn.Module):
n_pts_per_ray=n_pts_per_ray_evaluation, n_pts_per_ray=n_pts_per_ray_evaluation,
min_depth=0.0, min_depth=0.0,
max_depth=0.0, max_depth=0.0,
n_rays_per_image=self.n_rays_per_image_sampled_from_mask n_rays_per_image=(
if self._sampling_mode[EvaluationMode.EVALUATION] self.n_rays_per_image_sampled_from_mask
== RenderSamplingMode.MASK_SAMPLE if self._sampling_mode[EvaluationMode.EVALUATION]
else None, == RenderSamplingMode.MASK_SAMPLE
else None
),
unit_directions=True, unit_directions=True,
stratified_sampling=self.stratified_point_sampling_evaluation, stratified_sampling=self.stratified_point_sampling_evaluation,
) )
......
...@@ -415,7 +415,7 @@ class RayTracing(Configurable, nn.Module): ...@@ -415,7 +415,7 @@ class RayTracing(Configurable, nn.Module):
] ]
sampler_dists[mask_intersect_idx[p_out_mask]] = pts_intervals[ sampler_dists[mask_intersect_idx[p_out_mask]] = pts_intervals[
p_out_mask, p_out_mask,
: :,
# pyre-fixme[6]: For 1st param expected `Union[bool, float, int]` but # pyre-fixme[6]: For 1st param expected `Union[bool, float, int]` but
# got `Tensor`. # got `Tensor`.
][torch.arange(n_p_out), out_pts_idx] ][torch.arange(n_p_out), out_pts_idx]
......
...@@ -43,9 +43,9 @@ class SignedDistanceFunctionRenderer(BaseRenderer, torch.nn.Module): # pyre-ign ...@@ -43,9 +43,9 @@ class SignedDistanceFunctionRenderer(BaseRenderer, torch.nn.Module): # pyre-ign
run_auto_creation(self) run_auto_creation(self)
self.ray_normal_coloring_network_args[ self.ray_normal_coloring_network_args["feature_vector_size"] = (
"feature_vector_size" render_features_dimensions
] = render_features_dimensions )
self._rgb_network = RayNormalColoringNetwork( self._rgb_network = RayNormalColoringNetwork(
**self.ray_normal_coloring_network_args **self.ray_normal_coloring_network_args
) )
...@@ -201,15 +201,15 @@ class SignedDistanceFunctionRenderer(BaseRenderer, torch.nn.Module): # pyre-ign ...@@ -201,15 +201,15 @@ class SignedDistanceFunctionRenderer(BaseRenderer, torch.nn.Module): # pyre-ign
None, :, 0, : None, :, 0, :
] ]
normals_full.view(-1, 3)[surface_mask] = normals normals_full.view(-1, 3)[surface_mask] = normals
render_full.view(-1, self.render_features_dimensions)[ render_full.view(-1, self.render_features_dimensions)[surface_mask] = (
surface_mask self._rgb_network(
] = self._rgb_network( features,
features, differentiable_surface_points[None],
differentiable_surface_points[None], normals,
normals, ray_bundle,
ray_bundle, surface_mask[None, :, None],
surface_mask[None, :, None], pooling_fn=None, # TODO
pooling_fn=None, # TODO )
) )
mask_full.view(-1, 1)[~surface_mask] = torch.sigmoid( mask_full.view(-1, 1)[~surface_mask] = torch.sigmoid(
# pyre-fixme[6]: For 1st param expected `Tensor` but got `float`. # pyre-fixme[6]: For 1st param expected `Tensor` but got `float`.
......
...@@ -241,9 +241,9 @@ class _Registry: ...@@ -241,9 +241,9 @@ class _Registry:
""" """
def __init__(self) -> None: def __init__(self) -> None:
self._mapping: Dict[ self._mapping: Dict[Type[ReplaceableBase], Dict[str, Type[ReplaceableBase]]] = (
Type[ReplaceableBase], Dict[str, Type[ReplaceableBase]] defaultdict(dict)
] = defaultdict(dict) )
def register(self, some_class: Type[_X]) -> Type[_X]: def register(self, some_class: Type[_X]) -> Type[_X]:
""" """
......
...@@ -139,9 +139,11 @@ def generate_eval_video_cameras( ...@@ -139,9 +139,11 @@ def generate_eval_video_cameras(
fit = fit_circle_in_3d( fit = fit_circle_in_3d(
cam_centers, cam_centers,
angles=angle, angles=angle,
offset=angle.new_tensor(traj_offset_canonical) offset=(
if traj_offset_canonical is not None angle.new_tensor(traj_offset_canonical)
else None, if traj_offset_canonical is not None
else None
),
up=angle.new_tensor(up), up=angle.new_tensor(up),
) )
traj = fit.generated_points traj = fit.generated_points
......
...@@ -146,9 +146,11 @@ def cat_dataclass(batch, tensor_collator: Callable): ...@@ -146,9 +146,11 @@ def cat_dataclass(batch, tensor_collator: Callable):
) )
elif isinstance(elem_f, collections.abc.Mapping): elif isinstance(elem_f, collections.abc.Mapping):
collated[f.name] = { collated[f.name] = {
k: tensor_collator([getattr(e, f.name)[k] for e in batch]) k: (
if elem_f[k] is not None tensor_collator([getattr(e, f.name)[k] for e in batch])
else None if elem_f[k] is not None
else None
)
for k in elem_f for k in elem_f
} }
else: else:
......
...@@ -81,7 +81,6 @@ class FishEyeCameras(CamerasBase): ...@@ -81,7 +81,6 @@ class FishEyeCameras(CamerasBase):
device: Device = "cpu", device: Device = "cpu",
image_size: Optional[Union[List, Tuple, torch.Tensor]] = None, image_size: Optional[Union[List, Tuple, torch.Tensor]] = None,
) -> None: ) -> None:
""" """
Args: Args:
......
...@@ -712,9 +712,9 @@ def convert_clipped_rasterization_to_original_faces( ...@@ -712,9 +712,9 @@ def convert_clipped_rasterization_to_original_faces(
) )
bary_coords_unclipped_subset = bary_coords_unclipped_subset.reshape([N * 3]) bary_coords_unclipped_subset = bary_coords_unclipped_subset.reshape([N * 3])
bary_coords_unclipped[ bary_coords_unclipped[faces_to_convert_mask_expanded] = (
faces_to_convert_mask_expanded bary_coords_unclipped_subset
] = bary_coords_unclipped_subset )
# dists for case 4 faces will be handled in the rasterizer # dists for case 4 faces will be handled in the rasterizer
# so no need to modify them here. # so no need to modify them here.
......
...@@ -605,7 +605,10 @@ def rasterize_meshes_python( # noqa: C901 ...@@ -605,7 +605,10 @@ def rasterize_meshes_python( # noqa: C901
# If faces were clipped, map the rasterization result to be in terms of the # If faces were clipped, map the rasterization result to be in terms of the
# original unclipped faces. This may involve converting barycentric # original unclipped faces. This may involve converting barycentric
# coordinates # coordinates
(face_idxs, bary_coords,) = convert_clipped_rasterization_to_original_faces( (
face_idxs,
bary_coords,
) = convert_clipped_rasterization_to_original_faces(
face_idxs, face_idxs,
bary_coords, bary_coords,
# pyre-fixme[61]: `clipped_faces` may not be initialized here. # pyre-fixme[61]: `clipped_faces` may not be initialized here.
......
...@@ -4,6 +4,7 @@ ...@@ -4,6 +4,7 @@
# This source code is licensed under the BSD-style license found in the # This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree. # LICENSE file in the root directory of this source tree.
# If we can access EGL, import MeshRasterizerOpenGL. # If we can access EGL, import MeshRasterizerOpenGL.
def _can_import_egl_and_pycuda(): def _can_import_egl_and_pycuda():
import os import os
......
...@@ -292,9 +292,11 @@ class _OpenGLMachinery: ...@@ -292,9 +292,11 @@ class _OpenGLMachinery:
pix_to_face, bary_coord, zbuf = self._rasterize_mesh( pix_to_face, bary_coord, zbuf = self._rasterize_mesh(
mesh, mesh,
image_size, image_size,
projection_matrix=projection_matrix[mesh_id] projection_matrix=(
if projection_matrix.shape[0] > 1 projection_matrix[mesh_id]
else None, if projection_matrix.shape[0] > 1
else None
),
) )
pix_to_faces.append(pix_to_face) pix_to_faces.append(pix_to_face)
bary_coords.append(bary_coord) bary_coords.append(bary_coord)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment