test_iou_box3d.py 39.5 KB
Newer Older
Nikhila Ravi's avatar
Nikhila Ravi committed
1
2
3
4
5
6
7
8
9
10
11
12
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

import random
import unittest
from typing import List, Tuple, Union

import torch
import torch.nn.functional as F
Nikhila Ravi's avatar
Nikhila Ravi committed
13
from common_testing import TestCaseMixin, get_random_cuda_device, get_tests_dir
Nikhila Ravi's avatar
Nikhila Ravi committed
14
from pytorch3d.io import save_obj
Nikhila Ravi's avatar
Nikhila Ravi committed
15
from pytorch3d.ops.iou_box3d import _box_planes, _box_triangles, box3d_overlap
Nikhila Ravi's avatar
Nikhila Ravi committed
16
17
18
from pytorch3d.transforms.rotation_conversions import random_rotation


Nikhila Ravi's avatar
Nikhila Ravi committed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
OBJECTRON_TO_PYTORCH3D_FACE_IDX = [0, 4, 6, 2, 1, 5, 7, 3]
DATA_DIR = get_tests_dir() / "data"
DEBUG = False

UNIT_BOX = [
    [0, 0, 0],
    [1, 0, 0],
    [1, 1, 0],
    [0, 1, 0],
    [0, 0, 1],
    [1, 0, 1],
    [1, 1, 1],
    [0, 1, 1],
]


Nikhila Ravi's avatar
Nikhila Ravi committed
35
36
37
38
39
class TestIoU3D(TestCaseMixin, unittest.TestCase):
    def setUp(self) -> None:
        super().setUp()
        torch.manual_seed(1)

Nikhila Ravi's avatar
Nikhila Ravi committed
40
41
    @staticmethod
    def create_box(xyz, whl):
Nikhila Ravi's avatar
Nikhila Ravi committed
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
        x, y, z = xyz
        w, h, le = whl

        verts = torch.tensor(
            [
                [x - w / 2.0, y - h / 2.0, z - le / 2.0],
                [x + w / 2.0, y - h / 2.0, z - le / 2.0],
                [x + w / 2.0, y + h / 2.0, z - le / 2.0],
                [x - w / 2.0, y + h / 2.0, z - le / 2.0],
                [x - w / 2.0, y - h / 2.0, z + le / 2.0],
                [x + w / 2.0, y - h / 2.0, z + le / 2.0],
                [x + w / 2.0, y + h / 2.0, z + le / 2.0],
                [x - w / 2.0, y + h / 2.0, z + le / 2.0],
            ],
            device=xyz.device,
            dtype=torch.float32,
        )
        return verts

Nikhila Ravi's avatar
Nikhila Ravi committed
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
    @staticmethod
    def _box3d_overlap_naive_batched(boxes1, boxes2):
        """
        Wrapper around box3d_overlap_naive to support
        batched input
        """
        N = boxes1.shape[0]
        M = boxes2.shape[0]
        vols = torch.zeros((N, M), dtype=torch.float32, device=boxes1.device)
        ious = torch.zeros((N, M), dtype=torch.float32, device=boxes1.device)
        for n in range(N):
            for m in range(M):
                vol, iou = box3d_overlap_naive(boxes1[n], boxes2[m])
                vols[n, m] = vol
                ious[n, m] = iou
        return vols, ious

    @staticmethod
    def _box3d_overlap_sampling_batched(boxes1, boxes2, num_samples: int):
        """
        Wrapper around box3d_overlap_sampling to support
        batched input
        """
        N = boxes1.shape[0]
        M = boxes2.shape[0]
        ious = torch.zeros((N, M), dtype=torch.float32, device=boxes1.device)
        for n in range(N):
            for m in range(M):
                iou = box3d_overlap_sampling(boxes1[n], boxes2[m])
                ious[n, m] = iou
        return ious

    def _test_iou(self, overlap_fn, device):
Nikhila Ravi's avatar
Nikhila Ravi committed
94
95

        box1 = torch.tensor(
Nikhila Ravi's avatar
Nikhila Ravi committed
96
            UNIT_BOX,
Nikhila Ravi's avatar
Nikhila Ravi committed
97
98
99
100
101
            dtype=torch.float32,
            device=device,
        )

        # 1st test: same box, iou = 1.0
Nikhila Ravi's avatar
Nikhila Ravi committed
102
103
104
        vol, iou = overlap_fn(box1[None], box1[None])
        self.assertClose(vol, torch.tensor([[1.0]], device=vol.device, dtype=vol.dtype))
        self.assertClose(iou, torch.tensor([[1.0]], device=vol.device, dtype=vol.dtype))
Nikhila Ravi's avatar
Nikhila Ravi committed
105
106
107
108

        # 2nd test
        dd = random.random()
        box2 = box1 + torch.tensor([[0.0, dd, 0.0]], device=device)
Nikhila Ravi's avatar
Nikhila Ravi committed
109
110
111
112
        vol, iou = overlap_fn(box1[None], box2[None])
        self.assertClose(
            vol, torch.tensor([[1 - dd]], device=vol.device, dtype=vol.dtype)
        )
Nikhila Ravi's avatar
Nikhila Ravi committed
113
114
115
116

        # 3rd test
        dd = random.random()
        box2 = box1 + torch.tensor([[dd, 0.0, 0.0]], device=device)
Nikhila Ravi's avatar
Nikhila Ravi committed
117
118
119
120
        vol, _ = overlap_fn(box1[None], box2[None])
        self.assertClose(
            vol, torch.tensor([[1 - dd]], device=vol.device, dtype=vol.dtype)
        )
Nikhila Ravi's avatar
Nikhila Ravi committed
121
122
123
124

        # 4th test
        ddx, ddy, ddz = random.random(), random.random(), random.random()
        box2 = box1 + torch.tensor([[ddx, ddy, ddz]], device=device)
Nikhila Ravi's avatar
Nikhila Ravi committed
125
        vol, _ = overlap_fn(box1[None], box2[None])
Nikhila Ravi's avatar
Nikhila Ravi committed
126
127
128
        self.assertClose(
            vol,
            torch.tensor(
Nikhila Ravi's avatar
Nikhila Ravi committed
129
130
131
                [[(1 - ddx) * (1 - ddy) * (1 - ddz)]],
                device=vol.device,
                dtype=vol.dtype,
Nikhila Ravi's avatar
Nikhila Ravi committed
132
133
134
            ),
        )

Nikhila Ravi's avatar
Nikhila Ravi committed
135
136
137
138
        # Also check IoU is 1 when computing overlap with the same shifted box
        vol, iou = overlap_fn(box2[None], box2[None])
        self.assertClose(iou, torch.tensor([[1.0]], device=vol.device, dtype=vol.dtype))

Nikhila Ravi's avatar
Nikhila Ravi committed
139
140
141
142
143
144
        # 5th test
        ddx, ddy, ddz = random.random(), random.random(), random.random()
        box2 = box1 + torch.tensor([[ddx, ddy, ddz]], device=device)
        RR = random_rotation(dtype=torch.float32, device=device)
        box1r = box1 @ RR.transpose(0, 1)
        box2r = box2 @ RR.transpose(0, 1)
Nikhila Ravi's avatar
Nikhila Ravi committed
145
        vol, _ = overlap_fn(box1r[None], box2r[None])
Nikhila Ravi's avatar
Nikhila Ravi committed
146
147
148
        self.assertClose(
            vol,
            torch.tensor(
Nikhila Ravi's avatar
Nikhila Ravi committed
149
150
151
                [[(1 - ddx) * (1 - ddy) * (1 - ddz)]],
                device=vol.device,
                dtype=vol.dtype,
Nikhila Ravi's avatar
Nikhila Ravi committed
152
153
154
155
156
157
158
159
160
161
            ),
        )

        # 6th test
        ddx, ddy, ddz = random.random(), random.random(), random.random()
        box2 = box1 + torch.tensor([[ddx, ddy, ddz]], device=device)
        RR = random_rotation(dtype=torch.float32, device=device)
        TT = torch.rand((1, 3), dtype=torch.float32, device=device)
        box1r = box1 @ RR.transpose(0, 1) + TT
        box2r = box2 @ RR.transpose(0, 1) + TT
Nikhila Ravi's avatar
Nikhila Ravi committed
162
        vol, _ = overlap_fn(box1r[None], box2r[None])
Nikhila Ravi's avatar
Nikhila Ravi committed
163
164
165
        self.assertClose(
            vol,
            torch.tensor(
Nikhila Ravi's avatar
Nikhila Ravi committed
166
167
168
                [[(1 - ddx) * (1 - ddy) * (1 - ddz)]],
                device=vol.device,
                dtype=vol.dtype,
Nikhila Ravi's avatar
Nikhila Ravi committed
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
            ),
        )

        # 7th test: hand coded example and test with meshlab output

        # Meshlab procedure to compute volumes of shapes
        # 1. Load a shape, then Filters
        #       -> Remeshing, Simplification, Reconstruction -> Convex Hull
        # 2. Select the convex hull shape (This is important!)
        # 3. Then Filters -> Quality Measure and Computation -> Compute Geometric Measures
        # 3. Check for "Mesh Volume" in the stdout
        box1r = torch.tensor(
            [
                [3.1673, -2.2574, 0.4817],
                [4.6470, 0.2223, 2.4197],
                [5.2200, 1.1844, 0.7510],
                [3.7403, -1.2953, -1.1869],
                [-4.9316, 2.5724, 0.4856],
                [-3.4519, 5.0521, 2.4235],
                [-2.8789, 6.0142, 0.7549],
                [-4.3586, 3.5345, -1.1831],
            ],
Nikhila Ravi's avatar
Nikhila Ravi committed
191
            device=device,
Nikhila Ravi's avatar
Nikhila Ravi committed
192
193
194
195
196
197
198
199
200
201
202
203
        )
        box2r = torch.tensor(
            [
                [0.5623, 4.0647, 3.4334],
                [3.3584, 4.3191, 1.1791],
                [3.0724, -5.9235, -0.3315],
                [0.2763, -6.1779, 1.9229],
                [-2.0773, 4.6121, 0.2213],
                [0.7188, 4.8665, -2.0331],
                [0.4328, -5.3761, -3.5436],
                [-2.3633, -5.6305, -1.2893],
            ],
Nikhila Ravi's avatar
Nikhila Ravi committed
204
            device=device,
Nikhila Ravi's avatar
Nikhila Ravi committed
205
206
207
208
209
210
211
        )
        # from Meshlab:
        vol_inters = 33.558529
        vol_box1 = 65.899010
        vol_box2 = 156.386719
        iou_mesh = vol_inters / (vol_box1 + vol_box2 - vol_inters)

Nikhila Ravi's avatar
Nikhila Ravi committed
212
213
214
        vol, iou = overlap_fn(box1r[None], box2r[None])
        self.assertClose(vol, torch.tensor([[vol_inters]], device=device), atol=1e-1)
        self.assertClose(iou, torch.tensor([[iou_mesh]], device=device), atol=1e-1)
Nikhila Ravi's avatar
Nikhila Ravi committed
215
216
217
218
219

        # 8th test: compare with sampling
        # create box1
        ctrs = torch.rand((2, 3), device=device)
        whl = torch.rand((2, 3), device=device) * 10.0 + 1.0
Nikhila Ravi's avatar
Nikhila Ravi committed
220
221
222
        # box8a & box8b
        box8a = self.create_box(ctrs[0], whl[0])
        box8b = self.create_box(ctrs[1], whl[1])
Nikhila Ravi's avatar
Nikhila Ravi committed
223
224
225
226
        RR1 = random_rotation(dtype=torch.float32, device=device)
        TT1 = torch.rand((1, 3), dtype=torch.float32, device=device)
        RR2 = random_rotation(dtype=torch.float32, device=device)
        TT2 = torch.rand((1, 3), dtype=torch.float32, device=device)
Nikhila Ravi's avatar
Nikhila Ravi committed
227
228
        box1r = box8a @ RR1.transpose(0, 1) + TT1
        box2r = box8b @ RR2.transpose(0, 1) + TT2
Nikhila Ravi's avatar
Nikhila Ravi committed
229
230
231
232
        vol, iou = overlap_fn(box1r[None], box2r[None])
        iou_sampling = self._box3d_overlap_sampling_batched(
            box1r[None], box2r[None], num_samples=10000
        )
Nikhila Ravi's avatar
Nikhila Ravi committed
233
234
235
236
237

        self.assertClose(iou, iou_sampling, atol=1e-2)

        # 9th test: non overlapping boxes, iou = 0.0
        box2 = box1 + torch.tensor([[0.0, 100.0, 0.0]], device=device)
Nikhila Ravi's avatar
Nikhila Ravi committed
238
239
240
241
        vol, iou = overlap_fn(box1[None], box2[None])
        self.assertClose(vol, torch.tensor([[0.0]], device=vol.device, dtype=vol.dtype))
        self.assertClose(iou, torch.tensor([[0.0]], device=vol.device, dtype=vol.dtype))

Nikhila Ravi's avatar
Nikhila Ravi committed
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
        # 10th test: Non coplanar verts in a plane
        box10 = box1 + torch.rand((8, 3), dtype=torch.float32, device=device)
        msg = "Plane vertices are not coplanar"
        with self.assertRaisesRegex(ValueError, msg):
            overlap_fn(box10[None], box10[None])

        # 11th test: Skewed bounding boxes but all verts are coplanar
        box_skew_1 = torch.tensor(
            [
                [0, 0, 0],
                [1, 0, 0],
                [1, 1, 0],
                [0, 1, 0],
                [-2, -2, 2],
                [2, -2, 2],
                [2, 2, 2],
                [-2, 2, 2],
            ],
            dtype=torch.float32,
            device=device,
        )
        box_skew_2 = torch.tensor(
            [
                [2.015995, 0.695233, 2.152806],
                [2.832533, 0.663448, 1.576389],
                [2.675445, -0.309592, 1.407520],
                [1.858907, -0.277806, 1.983936],
                [-0.413922, 3.161758, 2.044343],
                [2.852230, 3.034615, -0.261321],
                [2.223878, -0.857545, -0.936800],
                [-1.042273, -0.730402, 1.368864],
            ],
            dtype=torch.float32,
            device=device,
        )
        vol1 = 14.000
        vol2 = 14.000005
        vol_inters = 5.431122
        iou = vol_inters / (vol1 + vol2 - vol_inters)

        vols, ious = overlap_fn(box_skew_1[None], box_skew_2[None])
        self.assertClose(vols, torch.tensor([[vol_inters]], device=device), atol=1e-1)
        self.assertClose(ious, torch.tensor([[iou]], device=device), atol=1e-1)

Nikhila Ravi's avatar
Nikhila Ravi committed
286
    def test_iou_naive(self):
Nikhila Ravi's avatar
Nikhila Ravi committed
287
        device = get_random_cuda_device()
Nikhila Ravi's avatar
Nikhila Ravi committed
288
        self._test_iou(self._box3d_overlap_naive_batched, device)
Nikhila Ravi's avatar
Nikhila Ravi committed
289
        self._test_compare_objectron(self._box3d_overlap_naive_batched, device)
Nikhila Ravi's avatar
Nikhila Ravi committed
290
291
292
293

    def test_iou_cpu(self):
        device = torch.device("cpu")
        self._test_iou(box3d_overlap, device)
Nikhila Ravi's avatar
Nikhila Ravi committed
294
        self._test_compare_objectron(box3d_overlap, device)
Nikhila Ravi's avatar
Nikhila Ravi committed
295

Nikhila Ravi's avatar
Nikhila Ravi committed
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
    def test_iou_cuda(self):
        device = torch.device("cuda:0")
        self._test_iou(box3d_overlap, device)
        self._test_compare_objectron(box3d_overlap, device)

    def _test_compare_objectron(self, overlap_fn, device):
        # Load saved objectron data
        data_filename = "./objectron_vols_ious.pt"
        objectron_vals = torch.load(DATA_DIR / data_filename)
        boxes1 = objectron_vals["boxes1"]
        boxes2 = objectron_vals["boxes2"]
        vols_objectron = objectron_vals["vols"]
        ious_objectron = objectron_vals["ious"]

        boxes1 = boxes1.to(device=device, dtype=torch.float32)
        boxes2 = boxes2.to(device=device, dtype=torch.float32)

        # Convert vertex orderings from Objectron to PyTorch3D convention
        idx = torch.tensor(
            OBJECTRON_TO_PYTORCH3D_FACE_IDX, dtype=torch.int64, device=device
        )
        boxes1 = boxes1.index_select(index=idx, dim=1)
        boxes2 = boxes2.index_select(index=idx, dim=1)

        # Run PyTorch3D version
        vols, ious = overlap_fn(boxes1, boxes2)

        # Check values match
        self.assertClose(vols_objectron, vols.cpu())
        self.assertClose(ious_objectron, ious.cpu())
Nikhila Ravi's avatar
Nikhila Ravi committed
326
327
328
329
330
331
332

    def test_batched_errors(self):
        N, M = 5, 10
        boxes1 = torch.randn((N, 8, 3))
        boxes2 = torch.randn((M, 10, 3))
        with self.assertRaisesRegex(ValueError, "(8, 3)"):
            box3d_overlap(boxes1, boxes2)
Nikhila Ravi's avatar
Nikhila Ravi committed
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391

    def test_box_volume(self):
        device = torch.device("cuda:0")
        box1 = torch.tensor(
            [
                [3.1673, -2.2574, 0.4817],
                [4.6470, 0.2223, 2.4197],
                [5.2200, 1.1844, 0.7510],
                [3.7403, -1.2953, -1.1869],
                [-4.9316, 2.5724, 0.4856],
                [-3.4519, 5.0521, 2.4235],
                [-2.8789, 6.0142, 0.7549],
                [-4.3586, 3.5345, -1.1831],
            ],
            dtype=torch.float32,
            device=device,
        )
        box2 = torch.tensor(
            [
                [0.5623, 4.0647, 3.4334],
                [3.3584, 4.3191, 1.1791],
                [3.0724, -5.9235, -0.3315],
                [0.2763, -6.1779, 1.9229],
                [-2.0773, 4.6121, 0.2213],
                [0.7188, 4.8665, -2.0331],
                [0.4328, -5.3761, -3.5436],
                [-2.3633, -5.6305, -1.2893],
            ],
            dtype=torch.float32,
            device=device,
        )

        box3 = torch.tensor(
            [
                [0, 0, 0],
                [1, 0, 0],
                [1, 1, 0],
                [0, 1, 0],
                [0, 0, 1],
                [1, 0, 1],
                [1, 1, 1],
                [0, 1, 1],
            ],
            dtype=torch.float32,
            device=device,
        )

        RR = random_rotation(dtype=torch.float32, device=device)
        TT = torch.rand((1, 3), dtype=torch.float32, device=device)
        box4 = box3 @ RR.transpose(0, 1) + TT

        self.assertClose(box_volume(box1).cpu(), torch.tensor(65.899010), atol=1e-3)
        self.assertClose(box_volume(box2).cpu(), torch.tensor(156.386719), atol=1e-3)
        self.assertClose(box_volume(box3).cpu(), torch.tensor(1.0), atol=1e-3)
        self.assertClose(box_volume(box4).cpu(), torch.tensor(1.0), atol=1e-3)

    def test_box_planar_dir(self):
        device = torch.device("cuda:0")
        box1 = torch.tensor(
Nikhila Ravi's avatar
Nikhila Ravi committed
392
            UNIT_BOX,
Nikhila Ravi's avatar
Nikhila Ravi committed
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
            dtype=torch.float32,
            device=device,
        )

        n1 = torch.tensor(
            [
                [0.0, 0.0, 1.0],
                [0.0, -1.0, 0.0],
                [0.0, 1.0, 0.0],
                [1.0, 0.0, 0.0],
                [-1.0, 0.0, 0.0],
                [0.0, 0.0, -1.0],
            ],
            device=device,
            dtype=torch.float32,
        )

        RR = random_rotation(dtype=torch.float32, device=device)
        TT = torch.rand((1, 3), dtype=torch.float32, device=device)
        box2 = box1 @ RR.transpose(0, 1) + TT
        n2 = n1 @ RR.transpose(0, 1)

        self.assertClose(box_planar_dir(box1), n1)
        self.assertClose(box_planar_dir(box2), n2)

Nikhila Ravi's avatar
Nikhila Ravi committed
418
419
    @staticmethod
    def iou_naive(N: int, M: int, device="cpu"):
Nikhila Ravi's avatar
Nikhila Ravi committed
420
421
422
423
424
425
426
        box = torch.tensor(
            [UNIT_BOX],
            dtype=torch.float32,
            device=device,
        )
        boxes1 = box + torch.randn((N, 1, 3), device=device)
        boxes2 = box + torch.randn((M, 1, 3), device=device)
Nikhila Ravi's avatar
Nikhila Ravi committed
427
428
429
430
431
432
433
434

        def output():
            vol, iou = TestIoU3D._box3d_overlap_naive_batched(boxes1, boxes2)

        return output

    @staticmethod
    def iou(N: int, M: int, device="cpu"):
Nikhila Ravi's avatar
Nikhila Ravi committed
435
436
437
438
439
440
441
        box = torch.tensor(
            [UNIT_BOX],
            dtype=torch.float32,
            device=device,
        )
        boxes1 = box + torch.randn((N, 1, 3), device=device)
        boxes2 = box + torch.randn((M, 1, 3), device=device)
Nikhila Ravi's avatar
Nikhila Ravi committed
442
443
444
445
446
447
448

        def output():
            vol, iou = box3d_overlap(boxes1, boxes2)

        return output

    @staticmethod
Nikhila Ravi's avatar
Nikhila Ravi committed
449
450
451
452
453
454
455
456
    def iou_sampling(N: int, M: int, num_samples: int, device="cpu"):
        box = torch.tensor(
            [UNIT_BOX],
            dtype=torch.float32,
            device=device,
        )
        boxes1 = box + torch.randn((N, 1, 3), device=device)
        boxes2 = box + torch.randn((M, 1, 3), device=device)
Nikhila Ravi's avatar
Nikhila Ravi committed
457
458
459
460
461
462

        def output():
            _ = TestIoU3D._box3d_overlap_sampling_batched(boxes1, boxes2, num_samples)

        return output

Nikhila Ravi's avatar
Nikhila Ravi committed
463
464
465
466
467
468
469

# -------------------------------------------------- #
#                NAIVE IMPLEMENTATION                #
# -------------------------------------------------- #

"""
The main functions below are:
Nikhila Ravi's avatar
Nikhila Ravi committed
470
* box3d_overlap_naive: which computes the exact IoU of box1 and box2
Nikhila Ravi's avatar
Nikhila Ravi committed
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
* box3d_overlap_sampling: which computes an approximate IoU of box1 and box2
    by sampling points within the boxes

Note that both implementations currently do not support batching.
"""
# -------------------------------------------------- #
# Throughout this implementation, we assume that boxes
# are defined by their 8 corners in the following order
#
#        (4) +---------+. (5)
#            | ` .     |  ` .
#            | (0) +---+-----+ (1)
#            |     |   |     |
#        (7) +-----+---+. (6)|
#            ` .   |     ` . |
#            (3) ` +---------+ (2)
#
# -------------------------------------------------- #

# -------------------------------------------------- #
#       HELPER FUNCTIONS FOR EXACT SOLUTION          #
# -------------------------------------------------- #


def get_tri_verts(box: torch.Tensor) -> torch.Tensor:
    """
    Return the vertex coordinates forming the triangles of the box.
    The computation here resembles the Meshes data structure.
    But since we only want this tiny functionality, we abstract it out.
    Args:
        box: tensor of shape (8, 3)
    Returns:
        tri_verts: tensor of shape (12, 3, 3)
    """
    device = box.device
    faces = torch.tensor(_box_triangles, device=device, dtype=torch.int64)  # (12, 3)
    tri_verts = box[faces]  # (12, 3, 3)
    return tri_verts


def get_plane_verts(box: torch.Tensor) -> torch.Tensor:
    """
    Return the vertex coordinates forming the planes of the box.
    The computation here resembles the Meshes data structure.
    But since we only want this tiny functionality, we abstract it out.
    Args:
        box: tensor of shape (8, 3)
    Returns:
        plane_verts: tensor of shape (6, 4, 3)
    """
    device = box.device
    faces = torch.tensor(_box_planes, device=device, dtype=torch.int64)  # (6, 4)
    plane_verts = box[faces]  # (6, 4, 3)
    return plane_verts


Nikhila Ravi's avatar
Nikhila Ravi committed
527
def box_planar_dir(box: torch.Tensor, eps=1e-4) -> torch.Tensor:
Nikhila Ravi's avatar
Nikhila Ravi committed
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
    """
    Finds the unit vector n which is perpendicular to each plane in the box
    and points towards the inside of the box.
    The planes are defined by `_box_planes`.
    Since the shape is convex, we define the interior to be the direction
    pointing to the center of the shape.
    Args:
       box: tensor of shape (8, 3) of the vertices of the 3D box
    Returns:
       n: tensor of shape (6,) of the unit vector orthogonal to the face pointing
          towards the interior of the shape
    """
    assert box.shape[0] == 8 and box.shape[1] == 3

    # center point of each box
    ctr = box.mean(0).view(1, 3)

    verts = get_plane_verts(box)  # (6, 4, 3)

    v0, v1, v2, v3 = verts.unbind(1)  # each v of shape (6, 3)

    # We project the ctr on the plane defined by (v0, v1, v2, v3)
    # We define e0 to be the edge connecting (v1, v0)
    # We define e1 to be the edge connecting (v2, v0)
    # And n is the cross product of e0, e1, either pointing "inside" or not.
    e0 = F.normalize(v1 - v0, dim=-1)
    e1 = F.normalize(v2 - v0, dim=-1)
    n = F.normalize(torch.cross(e0, e1, dim=-1), dim=-1)

Nikhila Ravi's avatar
Nikhila Ravi committed
557
558
559
560
561
    # Check all verts are coplanar
    if not ((v3 - v0).unsqueeze(1).bmm(n.unsqueeze(2)).abs() < eps).all().item():
        msg = "Plane vertices are not coplanar"
        raise ValueError(msg)

Nikhila Ravi's avatar
Nikhila Ravi committed
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
    # We can write:  `ctr = v0 + a * e0 + b * e1 + c * n`, (1).
    # With <e0, n> = 0 and <e1, n> = 0, where <.,.> refers to the dot product,
    # since that e0 is orthogonal to n. Same for e1.
    """
    # Below is how one would solve for (a, b, c)
    # Solving for (a, b)
    numF = verts.shape[0]
    A = torch.ones((numF, 2, 2), dtype=torch.float32, device=device)
    B = torch.ones((numF, 2), dtype=torch.float32, device=device)
    A[:, 0, 1] = (e0 * e1).sum(-1)
    A[:, 1, 0] = (e0 * e1).sum(-1)
    B[:, 0] = ((ctr - v0) * e0).sum(-1)
    B[:, 1] = ((ctr - v1) * e1).sum(-1)
    ab = torch.linalg.solve(A, B)  # (numF, 2)
    a, b = ab.unbind(1)
    # solving for c
    c = ((ctr - v0 - a.view(numF, 1) * e0 - b.view(numF, 1) * e1) * n).sum(-1)
    """
    # Since we know that <e0, n> = 0 and <e1, n> = 0 (e0 and e1 are orthogonal to n),
    # the above solution is equivalent to
    c = ((ctr - v0) * n).sum(-1)
    # If c is negative, then we revert the direction of n such that n points "inside"
    negc = c < 0.0
    n[negc] *= -1.0
    # c[negc] *= -1.0
    # Now (a, b, c) is the solution to (1)

    return n


def box_volume(box: torch.Tensor) -> torch.Tensor:
    """
    Computes the volume of each box in boxes.
    The volume of each box is the sum of all the tetrahedrons
    formed by the faces of the box. The face of the box is the base of
    that tetrahedron and the center point of the box is the apex.
    In other words, vol(box) = sum_i A_i * d_i / 3,
    where A_i is the area of the i-th face and d_i is the
    distance of the apex from the face.
    We use the equivalent dot/cross product formulation.
    Read https://en.wikipedia.org/wiki/Tetrahedron#Volume

    Args:
        box: tensor of shape (8, 3) containing the vertices
            of the 3D box
    Returns:
        vols: the volume of the box
    """
    assert box.shape[0] == 8 and box.shape[1] == 3

    # Compute the center point of each box
    ctr = box.mean(0).view(1, 1, 3)

    # Extract the coordinates of the faces for each box
    tri_verts = get_tri_verts(box)
    # Set the origin of the coordinate system to coincide
    # with the apex of the tetrahedron to simplify the volume calculation
    # See https://en.wikipedia.org/wiki/Tetrahedron#Volume
    tri_verts = tri_verts - ctr

    # Compute the volume of each box using the dot/cross product formula
    vols = torch.sum(
        tri_verts[:, 0] * torch.cross(tri_verts[:, 1], tri_verts[:, 2], dim=-1),
        dim=-1,
    )
    vols = (vols.abs() / 6.0).sum()

    return vols


def coplanar_tri_faces(tri1: torch.Tensor, tri2: torch.Tensor, eps: float = 1e-5):
    """
    Determines whether two triangle faces in 3D are coplanar
    Args:
        tri1: tensor of shape (3, 3) of the vertices of the 1st triangle
        tri2: tensor of shape (3, 3) of the vertices of the 2nd triangle
    Returns:
        is_coplanar: bool
    """
    v0, v1, v2 = tri1.unbind(0)
    e0 = F.normalize(v1 - v0, dim=0)
    e1 = F.normalize(v2 - v0, dim=0)
    e2 = F.normalize(torch.cross(e0, e1), dim=0)

    coplanar2 = torch.zeros((3,), dtype=torch.bool, device=tri1.device)
    for i in range(3):
        if (tri2[i] - v0).dot(e2).abs() < eps:
            coplanar2[i] = 1
    coplanar2 = coplanar2.all()
    return coplanar2


def is_inside(
    plane: torch.Tensor,
    n: torch.Tensor,
    points: torch.Tensor,
    return_proj: bool = True,
    eps: float = 1e-6,
):
    """
    Computes whether point is "inside" the plane.
    The definition of "inside" means that the point
    has a positive component in the direction of the plane normal defined by n.
    For example,
                  plane
                    |
                    |         . (A)
                    |--> n
                    |
         .(B)       |

    Point (A) is "inside" the plane, while point (B) is "outside" the plane.
    Args:
      plane: tensor of shape (4,3) of vertices of a box plane
      n: tensor of shape (3,) of the unit "inside" direction on the plane
      points: tensor of shape (P, 3) of coordinates of a point
      return_proj: bool whether to return the projected point on the plane
    Returns:
      is_inside: bool of shape (P,) of whether point is inside
      p_proj: tensor of shape (P, 3) of the projected point on plane
    """
    device = plane.device
    v0, v1, v2, v3 = plane
    e0 = F.normalize(v1 - v0, dim=0)
    e1 = F.normalize(v2 - v0, dim=0)
    if not torch.allclose(e0.dot(n), torch.zeros((1,), device=device), atol=1e-6):
        raise ValueError("Input n is not perpendicular to the plane")
    if not torch.allclose(e1.dot(n), torch.zeros((1,), device=device), atol=1e-6):
        raise ValueError("Input n is not perpendicular to the plane")

    add_dim = False
    if points.ndim == 1:
        points = points.unsqueeze(0)
        add_dim = True

    assert points.shape[1] == 3
    # Every point p can be written as p = v0 + a e0 + b e1 + c n

    # If return_proj is True, we need to solve for (a, b)
    p_proj = None
    if return_proj:
        # solving for (a, b)
        A = torch.tensor(
            [[1.0, e0.dot(e1)], [e0.dot(e1), 1.0]], dtype=torch.float32, device=device
        )
        B = torch.zeros((2, points.shape[0]), dtype=torch.float32, device=device)
        B[0, :] = torch.sum((points - v0.view(1, 3)) * e0.view(1, 3), dim=-1)
        B[1, :] = torch.sum((points - v0.view(1, 3)) * e1.view(1, 3), dim=-1)

        ab = A.inverse() @ B  # (2, P)
        p_proj = v0.view(1, 3) + ab.transpose(0, 1) @ torch.stack((e0, e1), dim=0)

    # solving for c
    # c = (point - v0 - a * e0 - b * e1).dot(n)
    c = torch.sum((points - v0.view(1, 3)) * n.view(1, 3), dim=-1)
    ins = c > -eps

    if add_dim:
        assert p_proj.shape[0] == 1
        p_proj = p_proj[0]

    return ins, p_proj


def plane_edge_point_of_intersection(plane, n, p0, p1):
    """
    Finds the point of intersection between a box plane and
    a line segment connecting (p0, p1).
    The plane is assumed to be infinite long.
    Args:
      plane: tensor of shape (4, 3) of the coordinates of the vertices defining the plane
      n: tensor of shape (3,) of the unit direction perpendicular on the plane
          (Note that we could compute n but since it's computed in the main
          body of the function, we save time by feeding it in. For the purpose
          of this function, it's not important that n points "inside" the shape.)
      p0, p1: tensors of shape (3,), (3,)
    Returns:
      p: tensor of shape (3,) of the coordinates of the point of intersection
      a: scalar such that p = p0 + a*(p1-p0)
    """
    # The point of intersection can be parametrized
    # p = p0 + a (p1 - p0) where a in [0, 1]
    # We want to find a such that p is on plane
    # <p - v0, n> = 0
    v0, v1, v2, v3 = plane
    a = -(p0 - v0).dot(n) / (p1 - p0).dot(n)
    p = p0 + a * (p1 - p0)
    return p, a


"""
The three following functions support clipping a triangle face by a plane.
They contain the following cases: (a) the triangle has one point "outside" the plane and
(b) the triangle has two points "outside" the plane.
This logic follows the logic of clipping triangles when they intersect the image plane while
rendering.
"""


def clip_tri_by_plane_oneout(
    plane: torch.Tensor,
    n: torch.Tensor,
    vout: torch.Tensor,
    vin1: torch.Tensor,
    vin2: torch.Tensor,
    eps: float = 1e-6,
) -> Tuple[torch.Tensor, torch.Tensor]:
    """
    Case (a).
    Clips triangle by plane when vout is outside plane, and vin1, vin2, is inside
    In this case, only one vertex of the triangle is outside the plane.
    Clip the triangle into a quadrilateral, and then split into two triangles
    Args:
        plane: tensor of shape (4, 3) of the coordinates of the vertices forming the plane
        n: tensor of shape (3,) of the unit "inside" direction of the plane
        vout, vin1, vin2: tensors of shape (3,) of the points forming the triangle, where
            vout is "outside" the plane and vin1, vin2 are "inside"
    Returns:
        verts: tensor of shape (4, 3) containing the new vertices formed after clipping the
            original intersectiong triangle (vout, vin1, vin2)
        faces: tensor of shape (2, 3) defining the vertex indices forming the two new triangles
            which are "inside" the plane formed after clipping
    """
    device = plane.device
    # point of intersection between plane and (vin1, vout)
    pint1, a1 = plane_edge_point_of_intersection(plane, n, vin1, vout)
Nikhila Ravi's avatar
Nikhila Ravi committed
788
    assert a1 >= eps and a1 <= 1.0, a1
Nikhila Ravi's avatar
Nikhila Ravi committed
789
790
    # point of intersection between plane and (vin2, vout)
    pint2, a2 = plane_edge_point_of_intersection(plane, n, vin2, vout)
Nikhila Ravi's avatar
Nikhila Ravi committed
791
    assert a2 >= 0.0 and a2 <= 1.0, a2
Nikhila Ravi's avatar
Nikhila Ravi committed
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825

    verts = torch.stack((vin1, pint1, pint2, vin2), dim=0)  # 4x3
    faces = torch.tensor(
        [[0, 1, 2], [0, 2, 3]], dtype=torch.int64, device=device
    )  # 2x3
    return verts, faces


def clip_tri_by_plane_twoout(
    plane: torch.Tensor,
    n: torch.Tensor,
    vout1: torch.Tensor,
    vout2: torch.Tensor,
    vin: torch.Tensor,
    eps: float = 1e-6,
) -> Tuple[torch.Tensor, torch.Tensor]:
    """
    Case (b).
    Clips face by plane when vout1, vout2 are outside plane, and vin1 is inside
    In this case, only one vertex of the triangle is inside the plane.
    Args:
        plane: tensor of shape (4, 3) of the coordinates of the vertices forming the plane
        n: tensor of shape (3,) of the unit "inside" direction of the plane
        vout1, vout2, vin: tensors of shape (3,) of the points forming the triangle, where
            vin is "inside" the plane and vout1, vout2 are "outside"
    Returns:
        verts: tensor of shape (3, 3) containing the new vertices formed after clipping the
            original intersectiong triangle (vout, vin1, vin2)
        faces: tensor of shape (1, 3) defining the vertex indices forming
            the single new triangle which is "inside" the plane formed after clipping
    """
    device = plane.device
    # point of intersection between plane and (vin, vout1)
    pint1, a1 = plane_edge_point_of_intersection(plane, n, vin, vout1)
Nikhila Ravi's avatar
Nikhila Ravi committed
826
    assert a1 >= eps and a1 <= 1.0, a1
Nikhila Ravi's avatar
Nikhila Ravi committed
827
828
    # point of intersection between plane and (vin, vout2)
    pint2, a2 = plane_edge_point_of_intersection(plane, n, vin, vout2)
Nikhila Ravi's avatar
Nikhila Ravi committed
829
    assert a2 >= eps and a2 <= 1.0, a2
Nikhila Ravi's avatar
Nikhila Ravi committed
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896

    verts = torch.stack((vin, pint1, pint2), dim=0)  # 3x3
    faces = torch.tensor(
        [
            [0, 1, 2],
        ],
        dtype=torch.int64,
        device=device,
    )  # 1x3
    return verts, faces


def clip_tri_by_plane(plane, n, tri_verts) -> Union[List, torch.Tensor]:
    """
    Clip a trianglular face defined by tri_verts with a plane of inside "direction" n.
    This function computes whether the triangle has one or two
    or none points "outside" the plane.
    Args:
       plane: tensor of shape (4, 3) of the vertex coordinates of the plane
       n: tensor of shape (3,) of the unit "inside" direction of the plane
       tri_verts: tensor of shape (3, 3) of the vertex coordiantes of the the triangle faces
    Returns:
        tri_verts: tensor of shape (K, 3, 3) of the vertex coordinates of the triangles formed
            after clipping. All K triangles are now "inside" the plane.
    """
    v0, v1, v2 = tri_verts.unbind(0)
    isin0, _ = is_inside(plane, n, v0)
    isin1, _ = is_inside(plane, n, v1)
    isin2, _ = is_inside(plane, n, v2)

    if isin0 and isin1 and isin2:
        # all in, no clipping, keep the old triangle face
        return tri_verts.view(1, 3, 3)
    elif (not isin0) and (not isin1) and (not isin2):
        # all out, delete triangle
        return []
    else:
        if isin0:
            if isin1:  # (isin0, isin1, not isin2)
                verts, faces = clip_tri_by_plane_oneout(plane, n, v2, v0, v1)
                return verts[faces]
            elif isin2:  # (isin0, not isin1, isin2)
                verts, faces = clip_tri_by_plane_oneout(plane, n, v1, v0, v2)
                return verts[faces]
            else:  # (isin0, not isin1, not isin2)
                verts, faces = clip_tri_by_plane_twoout(plane, n, v1, v2, v0)
                return verts[faces]
        else:
            if isin1 and isin2:  # (not isin0, isin1, isin2)
                verts, faces = clip_tri_by_plane_oneout(plane, n, v0, v1, v2)
                return verts[faces]
            elif isin1:  # (not isin0, isin1, not isin2)
                verts, faces = clip_tri_by_plane_twoout(plane, n, v0, v2, v1)
                return verts[faces]
            elif isin2:  # (not isin0, not isin1, isin2)
                verts, faces = clip_tri_by_plane_twoout(plane, n, v0, v1, v2)
                return verts[faces]

    # Should not be reached
    return []


# -------------------------------------------------- #
#               MAIN: BOX3D_OVERLAP                  #
# -------------------------------------------------- #


Nikhila Ravi's avatar
Nikhila Ravi committed
897
def box3d_overlap_naive(box1: torch.Tensor, box2: torch.Tensor):
Nikhila Ravi's avatar
Nikhila Ravi committed
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
    """
    Computes the intersection of 3D boxes1 and boxes2.
    Inputs boxes1, boxes2 are tensors of shape (8, 3) containing
    the 8 corners of the boxes, as follows

        (4) +---------+. (5)
            | ` .     |  ` .
            | (0) +---+-----+ (1)
            |     |   |     |
        (7) +-----+---+. (6)|
            ` .   |     ` . |
            (3) ` +---------+ (2)

    Args:
        box1: tensor of shape (8, 3) of the coordinates of the 1st box
        box2: tensor of shape (8, 3) of the coordinates of the 2nd box
    Returns:
        vol: the volume of the intersecting convex shape
        iou: the intersection over union which is simply
            `iou = vol / (vol1 + vol2 - vol)`
    """
    device = box1.device
    # For boxes1 we compute the unit directions n1 corresponding to quad_faces
    n1 = box_planar_dir(box1)  # (6, 3)
    # For boxes2 we compute the unit directions n2 corresponding to quad_faces
    n2 = box_planar_dir(box2)

    # We define triangle faces
    vol1 = box_volume(box1)
    vol2 = box_volume(box2)

    tri_verts1 = get_tri_verts(box1)  # (12, 3, 3)
    plane_verts1 = get_plane_verts(box1)  # (6, 4, 3)
    tri_verts2 = get_tri_verts(box2)  # (12, 3, 3)
    plane_verts2 = get_plane_verts(box2)  # (6, 4, 3)

    num_planes = plane_verts1.shape[0]  # (=6) based on our definition of planes

    # Every triangle in box1 will be compared to each plane in box2.
    # If the triangle is fully outside or fully inside, then it will remain as is
    # If the triangle intersects with the (infinite) plane, it will be broken into
    # subtriangles such that each subtriangle is either fully inside or outside the plane.

    # Tris in Box1 -> Planes in Box2
    for pidx in range(num_planes):
        plane = plane_verts2[pidx]
        nplane = n2[pidx]
        tri_verts_updated = torch.zeros((0, 3, 3), dtype=torch.float32, device=device)
        for i in range(tri_verts1.shape[0]):
            tri = clip_tri_by_plane(plane, nplane, tri_verts1[i])
            if len(tri) > 0:
                tri_verts_updated = torch.cat((tri_verts_updated, tri), dim=0)
        tri_verts1 = tri_verts_updated

    # Tris in Box2 -> Planes in Box1
    for pidx in range(num_planes):
        plane = plane_verts1[pidx]
        nplane = n1[pidx]
        tri_verts_updated = torch.zeros((0, 3, 3), dtype=torch.float32, device=device)
        for i in range(tri_verts2.shape[0]):
            tri = clip_tri_by_plane(plane, nplane, tri_verts2[i])
            if len(tri) > 0:
                tri_verts_updated = torch.cat((tri_verts_updated, tri), dim=0)
        tri_verts2 = tri_verts_updated

    # remove triangles that are coplanar from the intersection as
    # otherwise they would be doublecounting towards the volume
    # this happens only if the original 3D boxes have common planes
    # Since the resulting shape is convex and specifically composed of planar segments,
    # each planar segment can belong either on box1 or box2 but not both.
    # Without loss of generality, we assign shared planar segments to box1
    keep2 = torch.ones((tri_verts2.shape[0],), device=device, dtype=torch.bool)
    for i1 in range(tri_verts1.shape[0]):
        for i2 in range(tri_verts2.shape[0]):
            if coplanar_tri_faces(tri_verts1[i1], tri_verts2[i2]):
                keep2[i2] = 0
    keep2 = keep2.nonzero()[:, 0]
    tri_verts2 = tri_verts2[keep2]

    # intersecting shape
    num_faces = tri_verts1.shape[0] + tri_verts2.shape[0]
    num_verts = num_faces * 3  # V=F*3
    overlap_faces = torch.arange(num_verts).view(num_faces, 3)  # Fx3
    overlap_tri_verts = torch.cat((tri_verts1, tri_verts2), dim=0)  # Fx3x3
    overlap_verts = overlap_tri_verts.view(num_verts, 3)  # Vx3

    # the volume of the convex hull defined by (overlap_verts, overlap_faces)
    # can be defined as the sum of all the tetrahedrons formed where for each tetrahedron
    # the base is the triangle and the apex is the center point of the convex hull
    # See the math here: https://en.wikipedia.org/wiki/Tetrahedron#Volume

    # we compute the center by computing the center point of each face
    # and then averaging the face centers
    ctr = overlap_tri_verts.mean(1).mean(0)
    tetras = overlap_tri_verts - ctr.view(1, 1, 3)
    vol = torch.sum(
        tetras[:, 0] * torch.cross(tetras[:, 1], tetras[:, 2], dim=-1), dim=-1
    )
    vol = (vol.abs() / 6.0).sum()

    iou = vol / (vol1 + vol2 - vol)

Nikhila Ravi's avatar
Nikhila Ravi committed
1000
    if DEBUG:
Nikhila Ravi's avatar
Nikhila Ravi committed
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
        # save shapes
        tri_faces = torch.tensor(_box_triangles, device=device, dtype=torch.int64)
        save_obj("/tmp/output/shape1.obj", box1, tri_faces)
        save_obj("/tmp/output/shape2.obj", box2, tri_faces)
        if len(overlap_verts) > 0:
            save_obj("/tmp/output/inters_shape.obj", overlap_verts, overlap_faces)
    return vol, iou


# -------------------------------------------------- #
#       HELPER FUNCTIONS FOR SAMPLING SOLUTION       #
# -------------------------------------------------- #


def is_point_inside_box(box: torch.Tensor, points: torch.Tensor):
    """
    Determines whether points are inside the boxes
    Args:
        box: tensor of shape (8, 3) of the corners of the boxes
        points: tensor of shape (P, 3) of the points
    Returns:
        inside: bool tensor of shape (P,)
    """
    device = box.device
    P = points.shape[0]

    n = box_planar_dir(box)  # (6, 3)
    box_planes = get_plane_verts(box)  # (6, 4)
    num_planes = box_planes.shape[0]  # = 6

    # a point p is inside the box if it "inside" all planes of the box
    # so we run the checks
    ins = torch.zeros((P, num_planes), device=device, dtype=torch.bool)
    for i in range(num_planes):
        is_in, _ = is_inside(box_planes[i], n[i], points, return_proj=False)
        ins[:, i] = is_in
    ins = ins.all(dim=1)
    return ins


def sample_points_within_box(box: torch.Tensor, num_samples: int = 10):
    """
    Sample points within a box defined by its 8 coordinates
    Args:
        box: tensor of shape (8, 3) of the box coordinates
        num_samples: int defining the number of samples
    Returns:
        points: (num_samples, 3) of points inside the box
    """
    assert box.shape[0] == 8 and box.shape[1] == 3
    xyzmin = box.min(0).values.view(1, 3)
    xyzmax = box.max(0).values.view(1, 3)

    uvw = torch.rand((num_samples, 3), device=box.device)
    points = uvw * (xyzmax - xyzmin) + xyzmin

    # because the box is not axis aligned we need to check wether
    # the points are within the box
    num_points = 0
    samples = []
    while num_points < num_samples:
        inside = is_point_inside_box(box, points)
        samples.append(points[inside].view(-1, 3))
        num_points += inside.sum()

    samples = torch.cat(samples, dim=0)
    return samples[1:num_samples]


# -------------------------------------------------- #
#          MAIN: BOX3D_OVERLAP_SAMPLING              #
# -------------------------------------------------- #


def box3d_overlap_sampling(
    box1: torch.Tensor, box2: torch.Tensor, num_samples: int = 10000
):
    """
    Computes the intersection of two boxes by sampling points
    """
    vol1 = box_volume(box1)
    vol2 = box_volume(box2)

    points1 = sample_points_within_box(box1, num_samples=num_samples)
    points2 = sample_points_within_box(box2, num_samples=num_samples)

    isin21 = is_point_inside_box(box1, points2)
    num21 = isin21.sum()
    isin12 = is_point_inside_box(box2, points1)
    num12 = isin12.sum()

    assert num12 <= num_samples
    assert num21 <= num_samples

    inters = (vol1 * num12 + vol2 * num21) / 2.0
    union = vol1 * num_samples + vol2 * num_samples - inters
    return inters / union