"examples/community/stable_diffusion_controlnet_inpaint.py" did not exist on "91925fbb761d944d54271660c4c3cffee55798fa"
test_lighting.py 22.6 KB
Newer Older
1
# Copyright (c) Meta Platforms, Inc. and affiliates.
Patrick Labatut's avatar
Patrick Labatut committed
2
3
4
5
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
facebook-github-bot's avatar
facebook-github-bot committed
6
7
8

import unittest

9
10
11
import numpy as np
import torch
from common_testing import TestCaseMixin
facebook-github-bot's avatar
facebook-github-bot committed
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
from pytorch3d.renderer.lighting import DirectionalLights, PointLights
from pytorch3d.transforms import RotateAxisAngle


class TestLights(TestCaseMixin, unittest.TestCase):
    def test_init_lights(self):
        """
        Initialize Lights class with the default values.
        """
        device = torch.device("cuda:0")
        light = DirectionalLights(device=device)
        keys = ["ambient_color", "diffuse_color", "specular_color", "direction"]
        for k in keys:
            prop = getattr(light, k)
            self.assertTrue(torch.is_tensor(prop))
            self.assertTrue(prop.device == device)
            self.assertTrue(prop.shape == (1, 3))

        light = PointLights(device=device)
        keys = ["ambient_color", "diffuse_color", "specular_color", "location"]
        for k in keys:
            prop = getattr(light, k)
            self.assertTrue(torch.is_tensor(prop))
            self.assertTrue(prop.device == device)
            self.assertTrue(prop.shape == (1, 3))

    def test_lights_clone_to(self):
        device = torch.device("cuda:0")
        cpu = torch.device("cpu")
        light = DirectionalLights()
        new_light = light.clone().to(device)
        keys = ["ambient_color", "diffuse_color", "specular_color", "direction"]
        for k in keys:
            prop = getattr(light, k)
            new_prop = getattr(new_light, k)
            self.assertTrue(prop.device == cpu)
            self.assertTrue(new_prop.device == device)
            self.assertSeparate(new_prop, prop)

        light = PointLights()
        new_light = light.clone().to(device)
        keys = ["ambient_color", "diffuse_color", "specular_color", "location"]
        for k in keys:
            prop = getattr(light, k)
            new_prop = getattr(new_light, k)
            self.assertTrue(prop.device == cpu)
            self.assertTrue(new_prop.device == device)
            self.assertSeparate(new_prop, prop)

    def test_lights_accessor(self):
62
        d_light = DirectionalLights(ambient_color=((0.0, 0.0, 0.0), (1.0, 1.0, 1.0)))
facebook-github-bot's avatar
facebook-github-bot committed
63
64
65
66
67
        p_light = PointLights(ambient_color=((0.0, 0.0, 0.0), (1.0, 1.0, 1.0)))
        for light in [d_light, p_light]:
            # Update element
            color = (0.5, 0.5, 0.5)
            light[1].ambient_color = color
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
68
            self.assertClose(light.ambient_color[1], torch.tensor(color))
facebook-github-bot's avatar
facebook-github-bot committed
69
70
            # Get item and get value
            l0 = light[0]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
71
            self.assertClose(l0.ambient_color, torch.tensor((0.0, 0.0, 0.0)))
facebook-github-bot's avatar
facebook-github-bot committed
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

    def test_initialize_lights_broadcast(self):
        light = DirectionalLights(
            ambient_color=torch.randn(10, 3),
            diffuse_color=torch.randn(1, 3),
            specular_color=torch.randn(1, 3),
        )
        keys = ["ambient_color", "diffuse_color", "specular_color", "direction"]
        for k in keys:
            prop = getattr(light, k)
            self.assertTrue(prop.shape == (10, 3))

        light = PointLights(
            ambient_color=torch.randn(10, 3),
            diffuse_color=torch.randn(1, 3),
            specular_color=torch.randn(1, 3),
        )
        keys = ["ambient_color", "diffuse_color", "specular_color", "location"]
        for k in keys:
            prop = getattr(light, k)
            self.assertTrue(prop.shape == (10, 3))

    def test_initialize_lights_broadcast_fail(self):
        """
        Batch dims have to be the same or 1.
        """
        with self.assertRaises(ValueError):
            DirectionalLights(
100
                ambient_color=torch.randn(10, 3), diffuse_color=torch.randn(15, 3)
facebook-github-bot's avatar
facebook-github-bot committed
101
102
103
104
            )

        with self.assertRaises(ValueError):
            PointLights(
105
                ambient_color=torch.randn(10, 3), diffuse_color=torch.randn(15, 3)
facebook-github-bot's avatar
facebook-github-bot committed
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
            )

    def test_initialize_lights_dimensions_fail(self):
        """
        Color should have shape (N, 3) or (1, 3)
        """
        with self.assertRaises(ValueError):
            DirectionalLights(ambient_color=torch.randn(10, 4))

        with self.assertRaises(ValueError):
            DirectionalLights(direction=torch.randn(10, 4))

        with self.assertRaises(ValueError):
            PointLights(ambient_color=torch.randn(10, 4))

        with self.assertRaises(ValueError):
            PointLights(location=torch.randn(10, 4))


Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
125
class TestDiffuseLighting(TestCaseMixin, unittest.TestCase):
facebook-github-bot's avatar
facebook-github-bot committed
126
127
128
129
130
131
132
133
134
135
136
137
138
139
    def test_diffuse_directional_lights(self):
        """
        Test with a single point where:
        1) the normal and light direction are 45 degrees apart.
        2) the normal and light direction are 90 degrees apart. The output
           should be zero for this case
        """
        color = torch.tensor([1, 1, 1], dtype=torch.float32)
        direction = torch.tensor(
            [0, 1 / np.sqrt(2), 1 / np.sqrt(2)], dtype=torch.float32
        )
        normals = torch.tensor([0, 0, 1], dtype=torch.float32)
        normals = normals[None, None, :]
        expected_output = torch.tensor(
140
            [1 / np.sqrt(2), 1 / np.sqrt(2), 1 / np.sqrt(2)], dtype=torch.float32
facebook-github-bot's avatar
facebook-github-bot committed
141
        )
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
142
        expected_output = expected_output.view(1, 1, 3).repeat(3, 1, 1)
facebook-github-bot's avatar
facebook-github-bot committed
143
144
        light = DirectionalLights(diffuse_color=color, direction=direction)
        output_light = light.diffuse(normals=normals)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
145
        self.assertClose(output_light, expected_output)
facebook-github-bot's avatar
facebook-github-bot committed
146
147
148
149
150
151

        # Change light direction to be 90 degrees apart from normal direction.
        direction = torch.tensor([0, 1, 0], dtype=torch.float32)
        light.direction = direction
        expected_output = torch.zeros_like(expected_output)
        output_light = light.diffuse(normals=normals)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
152
        self.assertClose(output_light, expected_output)
facebook-github-bot's avatar
facebook-github-bot committed
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

    def test_diffuse_point_lights(self):
        """
        Test with a single point at the origin. Test two cases:
        1) the point light is at (1, 0, 1) hence the light direction is 45
           degrees apart from the normal direction
        1) the point light is at (0, 1, 0) hence the light direction is 90
           degrees apart from the normal direction. The output
           should be zero for this case
        """
        color = torch.tensor([1, 1, 1], dtype=torch.float32)
        location = torch.tensor(
            [0, 1 / np.sqrt(2), 1 / np.sqrt(2)], dtype=torch.float32
        )
        points = torch.tensor([0, 0, 0], dtype=torch.float32)
        normals = torch.tensor([0, 0, 1], dtype=torch.float32)
        expected_output = torch.tensor(
170
            [1 / np.sqrt(2), 1 / np.sqrt(2), 1 / np.sqrt(2)], dtype=torch.float32
facebook-github-bot's avatar
facebook-github-bot committed
171
172
        )
        expected_output = expected_output.view(-1, 1, 3)
173
        light = PointLights(diffuse_color=color[None, :], location=location[None, :])
facebook-github-bot's avatar
facebook-github-bot committed
174
175
176
        output_light = light.diffuse(
            points=points[None, None, :], normals=normals[None, None, :]
        )
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
177
        self.assertClose(output_light, expected_output)
facebook-github-bot's avatar
facebook-github-bot committed
178
179
180
181

        # Change light direction to be 90 degrees apart from normal direction.
        location = torch.tensor([0, 1, 0], dtype=torch.float32)
        expected_output = torch.zeros_like(expected_output)
182
        light = PointLights(diffuse_color=color[None, :], location=location[None, :])
facebook-github-bot's avatar
facebook-github-bot committed
183
184
185
        output_light = light.diffuse(
            points=points[None, None, :], normals=normals[None, None, :]
        )
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
186
        self.assertClose(output_light, expected_output)
facebook-github-bot's avatar
facebook-github-bot committed
187
188
189
190
191
192
193
194
195
196
197
198
199

    def test_diffuse_batched(self):
        """
        Test with a batch where each batch element has one point
        where the normal and light direction are 45 degrees apart.
        """
        batch_size = 10
        color = torch.tensor([1, 1, 1], dtype=torch.float32)
        direction = torch.tensor(
            [0, 1 / np.sqrt(2), 1 / np.sqrt(2)], dtype=torch.float32
        )
        normals = torch.tensor([0, 0, 1], dtype=torch.float32)
        expected_out = torch.tensor(
200
            [1 / np.sqrt(2), 1 / np.sqrt(2), 1 / np.sqrt(2)], dtype=torch.float32
facebook-github-bot's avatar
facebook-github-bot committed
201
202
203
204
205
206
207
208
209
210
        )

        # Reshape
        direction = direction.view(-1, 3).expand(batch_size, -1)
        normals = normals.view(-1, 1, 3).expand(batch_size, -1, -1)
        color = color.view(-1, 3).expand(batch_size, -1)
        expected_out = expected_out.view(-1, 1, 3).expand(batch_size, 1, 3)

        lights = DirectionalLights(diffuse_color=color, direction=direction)
        output_light = lights.diffuse(normals=normals)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
211
        self.assertClose(output_light, expected_out)
facebook-github-bot's avatar
facebook-github-bot committed
212
213
214
215
216
217
218
219
220
221
222
223
224
225

    def test_diffuse_batched_broadcast_inputs(self):
        """
        Test with a batch where each batch element has one point
        where the normal and light direction are 45 degrees apart.
        The color and direction are the same for each batch element.
        """
        batch_size = 10
        color = torch.tensor([1, 1, 1], dtype=torch.float32)
        direction = torch.tensor(
            [0, 1 / np.sqrt(2), 1 / np.sqrt(2)], dtype=torch.float32
        )
        normals = torch.tensor([0, 0, 1], dtype=torch.float32)
        expected_out = torch.tensor(
226
            [1 / np.sqrt(2), 1 / np.sqrt(2), 1 / np.sqrt(2)], dtype=torch.float32
facebook-github-bot's avatar
facebook-github-bot committed
227
228
229
230
231
232
233
234
235
236
237
238
239
        )

        # Reshape
        normals = normals.view(-1, 1, 3).expand(batch_size, -1, -1)
        expected_out = expected_out.view(-1, 1, 3).expand(batch_size, 1, 3)

        # Don't expand the direction or color. Broadcasting should happen
        # in the diffuse function.
        direction = direction.view(1, 3)
        color = color.view(1, 3)

        lights = DirectionalLights(diffuse_color=color, direction=direction)
        output_light = lights.diffuse(normals=normals)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
240
        self.assertClose(output_light, expected_out)
facebook-github-bot's avatar
facebook-github-bot committed
241
242
243
244
245
246
247
248
249
250
251

    def test_diffuse_batched_arbitrary_input_dims(self):
        """
        Test with a batch of inputs where shape of the input is mimicking the
        shape in a shading function i.e. an interpolated normal per pixel for
        top K faces per pixel.
        """
        N, H, W, K = 16, 256, 256, 100
        device = torch.device("cuda:0")
        color = torch.tensor([1, 1, 1], dtype=torch.float32, device=device)
        direction = torch.tensor(
252
            [0, 1 / np.sqrt(2), 1 / np.sqrt(2)], dtype=torch.float32, device=device
facebook-github-bot's avatar
facebook-github-bot committed
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
        )
        normals = torch.tensor([0, 0, 1], dtype=torch.float32, device=device)
        normals = normals.view(1, 1, 1, 1, 3).expand(N, H, W, K, -1)
        direction = direction.view(1, 3)
        color = color.view(1, 3)
        expected_output = torch.tensor(
            [1 / np.sqrt(2), 1 / np.sqrt(2), 1 / np.sqrt(2)],
            dtype=torch.float32,
            device=device,
        )
        expected_output = expected_output.view(1, 1, 1, 1, 3)
        expected_output = expected_output.expand(N, H, W, K, -1)

        lights = DirectionalLights(diffuse_color=color, direction=direction)
        output_light = lights.diffuse(normals=normals)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
268
        self.assertClose(output_light, expected_output)
facebook-github-bot's avatar
facebook-github-bot committed
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298

    def test_diffuse_batched_packed(self):
        """
        Test with a batch of 2 meshes each of which has faces on a single plane.
        The normal and light direction are 45 degrees apart for the first mesh
        and 90 degrees apart for the second mesh.

        The points and normals are in the packed format i.e. no batch dimension.
        """
        verts_packed = torch.rand((10, 3))  # points aren't used
        faces_per_mesh = [6, 4]
        mesh_to_vert_idx = [0] * faces_per_mesh[0] + [1] * faces_per_mesh[1]
        mesh_to_vert_idx = torch.tensor(mesh_to_vert_idx, dtype=torch.int64)
        color = torch.tensor([[1, 1, 1], [1, 1, 1]], dtype=torch.float32)
        direction = torch.tensor(
            [
                [0, 1 / np.sqrt(2), 1 / np.sqrt(2)],
                [0, 1, 0],  # 90 degrees to normal so zero diffuse light
            ],
            dtype=torch.float32,
        )
        normals = torch.tensor([[0, 0, 1], [0, 0, 1]], dtype=torch.float32)
        expected_output = torch.zeros_like(verts_packed, dtype=torch.float32)
        expected_output[:6, :] += 1 / np.sqrt(2)
        expected_output[6:, :] = 0.0
        lights = DirectionalLights(
            diffuse_color=color[mesh_to_vert_idx, :],
            direction=direction[mesh_to_vert_idx, :],
        )
        output_light = lights.diffuse(normals=normals[mesh_to_vert_idx, :])
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
299
        self.assertClose(output_light, expected_output)
facebook-github-bot's avatar
facebook-github-bot committed
300
301


Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
302
class TestSpecularLighting(TestCaseMixin, unittest.TestCase):
facebook-github-bot's avatar
facebook-github-bot committed
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
    def test_specular_directional_lights(self):
        """
        Specular highlights depend on the camera position as well as the light
        position/direction.
        Test with a single point where:
        1) the normal and light direction are -45 degrees apart and the normal
           and camera position are +45 degrees apart. The reflected light ray
           will be perfectly aligned with the camera so the output is 1.0.
        2) the normal and light direction are -45 degrees apart and the
           camera position is behind the point. The output should be zero for
           this case.
        """
        color = torch.tensor([1, 0, 1], dtype=torch.float32)
        direction = torch.tensor(
            [-1 / np.sqrt(2), 1 / np.sqrt(2), 0], dtype=torch.float32
        )
        camera_position = torch.tensor(
            [+1 / np.sqrt(2), 1 / np.sqrt(2), 0], dtype=torch.float32
        )
        points = torch.tensor([0, 0, 0], dtype=torch.float32)
        normals = torch.tensor([0, 1, 0], dtype=torch.float32)
        expected_output = torch.tensor([1.0, 0.0, 1.0], dtype=torch.float32)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
325
        expected_output = expected_output.view(1, 1, 3).repeat(3, 1, 1)
facebook-github-bot's avatar
facebook-github-bot committed
326
327
328
329
330
331
332
        lights = DirectionalLights(specular_color=color, direction=direction)
        output_light = lights.specular(
            points=points[None, None, :],
            normals=normals[None, None, :],
            camera_position=camera_position[None, :],
            shininess=torch.tensor(10),
        )
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
333
        self.assertClose(output_light, expected_output)
facebook-github-bot's avatar
facebook-github-bot committed
334
335
336
337
338
339
340
341
342
343
344
345

        # Change camera position to be behind the point.
        camera_position = torch.tensor(
            [+1 / np.sqrt(2), -1 / np.sqrt(2), 0], dtype=torch.float32
        )
        expected_output = torch.zeros_like(expected_output)
        output_light = lights.specular(
            points=points[None, None, :],
            normals=normals[None, None, :],
            camera_position=camera_position[None, :],
            shininess=torch.tensor(10),
        )
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
346
        self.assertClose(output_light, expected_output)
facebook-github-bot's avatar
facebook-github-bot committed
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364

    def test_specular_point_lights(self):
        """
        Replace directional lights with point lights and check the output
        is the same.

        Test an additional case where the angle between the light reflection
        direction and the view direction is 30 degrees.
        """
        color = torch.tensor([1, 0, 1], dtype=torch.float32)
        location = torch.tensor([-1, 1, 0], dtype=torch.float32)
        camera_position = torch.tensor(
            [+1 / np.sqrt(2), 1 / np.sqrt(2), 0], dtype=torch.float32
        )
        points = torch.tensor([0, 0, 0], dtype=torch.float32)
        normals = torch.tensor([0, 1, 0], dtype=torch.float32)
        expected_output = torch.tensor([1.0, 0.0, 1.0], dtype=torch.float32)
        expected_output = expected_output.view(-1, 1, 3)
365
        lights = PointLights(specular_color=color[None, :], location=location[None, :])
facebook-github-bot's avatar
facebook-github-bot committed
366
367
368
369
370
371
        output_light = lights.specular(
            points=points[None, None, :],
            normals=normals[None, None, :],
            camera_position=camera_position[None, :],
            shininess=torch.tensor(10),
        )
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
372
        self.assertClose(output_light, expected_output)
facebook-github-bot's avatar
facebook-github-bot committed
373
374
375
376
377
378
379
380
381
382
383
384

        # Change camera position to be behind the point
        camera_position = torch.tensor(
            [+1 / np.sqrt(2), -1 / np.sqrt(2), 0], dtype=torch.float32
        )
        expected_output = torch.zeros_like(expected_output)
        output_light = lights.specular(
            points=points[None, None, :],
            normals=normals[None, None, :],
            camera_position=camera_position[None, :],
            shininess=torch.tensor(10),
        )
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
385
        self.assertClose(output_light, expected_output)
facebook-github-bot's avatar
facebook-github-bot committed
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403

        # Change camera direction to be 30 degrees from the reflection direction
        camera_position = torch.tensor(
            [+1 / np.sqrt(2), 1 / np.sqrt(2), 0], dtype=torch.float32
        )
        rotate_30 = RotateAxisAngle(-30, axis="z")
        camera_position = rotate_30.transform_points(camera_position[None, :])
        expected_output = torch.tensor(
            [np.cos(30.0 * np.pi / 180), 0.0, np.cos(30.0 * np.pi / 180)],
            dtype=torch.float32,
        )
        expected_output = expected_output.view(-1, 1, 3)
        output_light = lights.specular(
            points=points[None, None, :],
            normals=normals[None, None, :],
            camera_position=camera_position[None, :],
            shininess=torch.tensor(10),
        )
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
404
        self.assertClose(output_light, expected_output ** 10)
facebook-github-bot's avatar
facebook-github-bot committed
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433

    def test_specular_batched(self):
        batch_size = 10
        color = torch.tensor([1, 0, 1], dtype=torch.float32)
        direction = torch.tensor(
            [-1 / np.sqrt(2), 1 / np.sqrt(2), 0], dtype=torch.float32
        )
        camera_position = torch.tensor(
            [+1 / np.sqrt(2), 1 / np.sqrt(2), 0], dtype=torch.float32
        )
        points = torch.tensor([0, 0, 0], dtype=torch.float32)
        normals = torch.tensor([0, 1, 0], dtype=torch.float32)
        expected_out = torch.tensor([1.0, 0.0, 1.0], dtype=torch.float32)

        # Reshape
        direction = direction.view(1, 3).expand(batch_size, -1)
        camera_position = camera_position.view(1, 3).expand(batch_size, -1)
        normals = normals.view(1, 1, 3).expand(batch_size, -1, -1)
        points = points.view(1, 1, 3).expand(batch_size, -1, -1)
        color = color.view(1, 3).expand(batch_size, -1)
        expected_out = expected_out.view(1, 1, 3).expand(batch_size, 1, 3)

        lights = DirectionalLights(specular_color=color, direction=direction)
        output_light = lights.specular(
            points=points,
            normals=normals,
            camera_position=camera_position,
            shininess=torch.tensor(10),
        )
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
434
        self.assertClose(output_light, expected_out)
facebook-github-bot's avatar
facebook-github-bot committed
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466

    def test_specular_batched_broadcast_inputs(self):
        batch_size = 10
        color = torch.tensor([1, 0, 1], dtype=torch.float32)
        direction = torch.tensor(
            [-1 / np.sqrt(2), 1 / np.sqrt(2), 0], dtype=torch.float32
        )
        camera_position = torch.tensor(
            [+1 / np.sqrt(2), 1 / np.sqrt(2), 0], dtype=torch.float32
        )
        points = torch.tensor([0, 0, 0], dtype=torch.float32)
        normals = torch.tensor([0, 1, 0], dtype=torch.float32)
        expected_out = torch.tensor([1.0, 0.0, 1.0], dtype=torch.float32)

        # Reshape
        normals = normals.view(1, 1, 3).expand(batch_size, -1, -1)
        points = points.view(1, 1, 3).expand(batch_size, -1, -1)
        expected_out = expected_out.view(1, 1, 3).expand(batch_size, 1, 3)

        # Don't expand the direction, color or camera_position.
        # These should be broadcasted in the specular function
        direction = direction.view(1, 3)
        camera_position = camera_position.view(1, 3)
        color = color.view(1, 3)

        lights = DirectionalLights(specular_color=color, direction=direction)
        output_light = lights.specular(
            points=points,
            normals=normals,
            camera_position=camera_position,
            shininess=torch.tensor(10),
        )
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
467
        self.assertClose(output_light, expected_out)
facebook-github-bot's avatar
facebook-github-bot committed
468
469
470
471
472
473
474
475

    def test_specular_batched_arbitrary_input_dims(self):
        """
        Test with a batch of inputs where shape of the input is mimicking the
        shape expected after rasterization i.e. a normal per pixel for
        top K faces per pixel.
        """
        device = torch.device("cuda:0")
476
        N, H, W, K = 8, 128, 128, 100
facebook-github-bot's avatar
facebook-github-bot committed
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
        color = torch.tensor([1, 0, 1], dtype=torch.float32, device=device)
        direction = torch.tensor(
            [-1 / np.sqrt(2), 1 / np.sqrt(2), 0], dtype=torch.float32
        )
        camera_position = torch.tensor(
            [+1 / np.sqrt(2), 1 / np.sqrt(2), 0], dtype=torch.float32
        )
        points = torch.tensor([0, 0, 0], dtype=torch.float32, device=device)
        normals = torch.tensor([0, 1, 0], dtype=torch.float32, device=device)
        points = points.view(1, 1, 1, 1, 3).expand(N, H, W, K, 3)
        normals = normals.view(1, 1, 1, 1, 3).expand(N, H, W, K, 3)

        direction = direction.view(1, 3)
        color = color.view(1, 3)
        camera_position = camera_position.view(1, 3)

        expected_output = torch.tensor(
            [1.0, 0.0, 1.0], dtype=torch.float32, device=device
        )
        expected_output = expected_output.view(-1, 1, 1, 1, 3)
        expected_output = expected_output.expand(N, H, W, K, -1)

        lights = DirectionalLights(specular_color=color, direction=direction)
        output_light = lights.specular(
            points=points,
            normals=normals,
            camera_position=camera_position,
            shininess=10.0,
        )
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
506
        self.assertClose(output_light, expected_output)
facebook-github-bot's avatar
facebook-github-bot committed
507
508
509
510
511
512
513
514
515
516
517

    def test_specular_batched_packed(self):
        """
        Test with a batch of 2 meshes each of which has faces on a single plane.
        The points and normals are in the packed format i.e. no batch dimension.
        """
        faces_per_mesh = [6, 4]
        mesh_to_vert_idx = [0] * faces_per_mesh[0] + [1] * faces_per_mesh[1]
        mesh_to_vert_idx = torch.tensor(mesh_to_vert_idx, dtype=torch.int64)
        color = torch.tensor([[1, 1, 1], [1, 0, 1]], dtype=torch.float32)
        direction = torch.tensor(
518
            [[-1 / np.sqrt(2), 1 / np.sqrt(2), 0], [-1, 1, 0]], dtype=torch.float32
facebook-github-bot's avatar
facebook-github-bot committed
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
        )
        camera_position = torch.tensor(
            [
                [+1 / np.sqrt(2), 1 / np.sqrt(2), 0],
                [+1 / np.sqrt(2), -1 / np.sqrt(2), 0],
            ],
            dtype=torch.float32,
        )
        points = torch.tensor([[0, 0, 0]], dtype=torch.float32)
        normals = torch.tensor([[0, 1, 0], [0, 1, 0]], dtype=torch.float32)
        expected_output = torch.zeros((10, 3), dtype=torch.float32)
        expected_output[:6, :] += 1.0

        lights = DirectionalLights(
            specular_color=color[mesh_to_vert_idx, :],
            direction=direction[mesh_to_vert_idx, :],
        )
        output_light = lights.specular(
            points=points.view(-1, 3).expand(10, -1),
            normals=normals.view(-1, 3)[mesh_to_vert_idx, :],
            camera_position=camera_position[mesh_to_vert_idx, :],
            shininess=10.0,
        )
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
542
        self.assertClose(output_light, expected_output)