test_forward_pass.py 7.75 KB
Newer Older
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1
2
3
4
5
6
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

7
import os
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
8
9
10
import unittest

import torch
11
from omegaconf import DictConfig, OmegaConf
12
from pytorch3d.implicitron.models.generic_model import GenericModel
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
13
from pytorch3d.implicitron.models.renderer.base import EvaluationMode
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
14
from pytorch3d.implicitron.tools.config import expand_args_fields, get_default_args
15
from pytorch3d.renderer.cameras import look_at_view_transform, PerspectiveCameras
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
16
from tests.common_testing import get_pytorch3d_dir
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
17

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
18
from .common_resources import provide_resnet34
19
20
21
22
23
24

IMPLICITRON_CONFIGS_DIR = (
    get_pytorch3d_dir() / "projects" / "implicitron_trainer" / "configs"
)


Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
25
class TestGenericModel(unittest.TestCase):
26
27
28
29
    @classmethod
    def setUpClass(cls) -> None:
        provide_resnet34()

30
31
32
    def setUp(self):
        torch.manual_seed(42)

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
33
    def test_gm(self):
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
34
        # Simple test of a forward and backward pass of the default GenericModel.
35
        device = torch.device("cuda:0")
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
36
        expand_args_fields(GenericModel)
37
        model = GenericModel(render_image_height=80, render_image_width=80)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
38
        model.to(device)
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
        self._one_model_test(model, device)

    def test_all_gm_configs(self):
        # Tests all model settings in the implicitron_trainer config folder.
        device = torch.device("cuda:0")
        config_files = []

        for pattern in ("repro_singleseq*.yaml", "repro_multiseq*.yaml"):
            config_files.extend(
                [
                    f
                    for f in IMPLICITRON_CONFIGS_DIR.glob(pattern)
                    if not f.name.endswith("_base.yaml")
                ]
            )

        for config_file in config_files:
            with self.subTest(name=config_file.stem):
                cfg = _load_model_config_from_yaml(str(config_file))
58
59
                cfg.render_image_height = 80
                cfg.render_image_width = 80
60
61
                model = GenericModel(**cfg)
                model.to(device)
David Novotny's avatar
David Novotny committed
62
63
64
65
66
67
                self._one_model_test(
                    model,
                    device,
                    eval_test=True,
                    bw_test=True,
                )
68
69
70
71
72
73
74

    def _one_model_test(
        self,
        model,
        device,
        n_train_cameras: int = 5,
        eval_test: bool = True,
David Novotny's avatar
David Novotny committed
75
        bw_test: bool = True,
76
    ):
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
77
78
79
80

        R, T = look_at_view_transform(azim=torch.rand(n_train_cameras) * 360)
        cameras = PerspectiveCameras(R=R, T=T, device=device)

81
82
83
84
85
86
87
88
89
        N, H, W = n_train_cameras, model.render_image_height, model.render_image_width

        random_args = {
            "camera": cameras,
            "fg_probability": _random_input_tensor(N, 1, H, W, True, device),
            "depth_map": _random_input_tensor(N, 1, H, W, False, device) + 0.1,
            "mask_crop": _random_input_tensor(N, 1, H, W, True, device),
            "sequence_name": ["sequence"] * N,
            "image_rgb": _random_input_tensor(N, 3, H, W, False, device),
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
90
91
        }

92
93
        # training foward pass
        model.train()
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
94
        train_preds = model(
95
            **random_args,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
96
97
            evaluation_mode=EvaluationMode.TRAINING,
        )
David Novotny's avatar
David Novotny committed
98
99
100
101
102
103
        self.assertTrue(
            train_preds["objective"].isfinite().item()
        )  # check finiteness of the objective

        if bw_test:
            train_preds["objective"].backward()
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
104

105
106
107
        if eval_test:
            model.eval()
            with torch.no_grad():
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
108
                eval_preds = model(
109
110
111
112
113
114
                    **random_args,
                    evaluation_mode=EvaluationMode.EVALUATION,
                )
                self.assertEqual(
                    eval_preds["images_render"].shape,
                    (1, 3, model.render_image_height, model.render_image_width),
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
115
                )
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
116
117
118

    def test_idr(self):
        # Forward pass of GenericModel with IDR.
119
        device = torch.device("cuda:0")
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
        args = get_default_args(GenericModel)
        args.renderer_class_type = "SignedDistanceFunctionRenderer"
        args.implicit_function_class_type = "IdrFeatureField"
        args.implicit_function_IdrFeatureField_args.n_harmonic_functions_xyz = 6

        model = GenericModel(**args)
        model.to(device)

        n_train_cameras = 2
        R, T = look_at_view_transform(azim=torch.rand(n_train_cameras) * 360)
        cameras = PerspectiveCameras(R=R, T=T, device=device)

        defaulted_args = {
            "depth_map": None,
            "mask_crop": None,
            "sequence_name": None,
        }

        target_image_rgb = torch.rand(
            (n_train_cameras, 3, model.render_image_height, model.render_image_width),
            device=device,
        )
        fg_probability = torch.rand(
            (n_train_cameras, 1, model.render_image_height, model.render_image_width),
            device=device,
        )
        train_preds = model(
            camera=cameras,
            evaluation_mode=EvaluationMode.TRAINING,
            image_rgb=target_image_rgb,
            fg_probability=fg_probability,
            **defaulted_args,
        )
        self.assertGreater(train_preds["objective"].item(), 0)
154

155
    def test_viewpool(self):
156
        device = torch.device("cuda:0")
157
158
        args = get_default_args(GenericModel)
        args.view_pooler_enabled = True
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
159
        args.image_feature_extractor_class_type = "ResNetFeatureExtractor"
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
        args.image_feature_extractor_ResNetFeatureExtractor_args.add_masks = False
        model = GenericModel(**args)
        model.to(device)

        n_train_cameras = 2
        R, T = look_at_view_transform(azim=torch.rand(n_train_cameras) * 360)
        cameras = PerspectiveCameras(R=R, T=T, device=device)

        defaulted_args = {
            "fg_probability": None,
            "depth_map": None,
            "mask_crop": None,
        }

        target_image_rgb = torch.rand(
            (n_train_cameras, 3, model.render_image_height, model.render_image_width),
            device=device,
        )
        train_preds = model(
            camera=cameras,
            evaluation_mode=EvaluationMode.TRAINING,
            image_rgb=target_image_rgb,
            sequence_name=["a"] * n_train_cameras,
            **defaulted_args,
        )
        self.assertGreater(train_preds["objective"].item(), 0)

187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209

def _random_input_tensor(
    N: int,
    C: int,
    H: int,
    W: int,
    is_binary: bool,
    device: torch.device,
) -> torch.Tensor:
    T = torch.rand(N, C, H, W, device=device)
    if is_binary:
        T = (T > 0.5).float()
    return T


def _load_model_config_from_yaml(config_path, strict=True) -> DictConfig:
    default_cfg = get_default_args(GenericModel)
    cfg = _load_model_config_from_yaml_rec(default_cfg, config_path)
    return cfg


def _load_model_config_from_yaml_rec(cfg: DictConfig, config_path: str) -> DictConfig:
    cfg_loaded = OmegaConf.load(config_path)
210
211
212
213
214
    cfg_model_loaded = None
    if "model_factory_ImplicitronModelFactory_args" in cfg_loaded:
        factory_args = cfg_loaded.model_factory_ImplicitronModelFactory_args
        if "model_GenericModel_args" in factory_args:
            cfg_model_loaded = factory_args.model_GenericModel_args
215
216
217
218
219
220
221
222
223
224
225
226
227
    defaults = cfg_loaded.pop("defaults", None)
    if defaults is not None:
        for default_name in defaults:
            if default_name in ("_self_", "default_config"):
                continue
            default_name = os.path.splitext(default_name)[0]
            defpath = os.path.join(os.path.dirname(config_path), default_name + ".yaml")
            cfg = _load_model_config_from_yaml_rec(cfg, defpath)
            if cfg_model_loaded is not None:
                cfg = OmegaConf.merge(cfg, cfg_model_loaded)
    elif cfg_model_loaded is not None:
        cfg = OmegaConf.merge(cfg, cfg_model_loaded)
    return cfg