bm_raysampling.py 1.3 KB
Newer Older
1
# Copyright (c) Meta Platforms, Inc. and affiliates.
Patrick Labatut's avatar
Patrick Labatut committed
2
3
4
5
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
David Novotny's avatar
David Novotny committed
6
7
8
9
10

import itertools

from fvcore.common.benchmark import benchmark
from pytorch3d.renderer import (
Jeremy Reizenstein's avatar
lint  
Jeremy Reizenstein committed
11
12
    FoVOrthographicCameras,
    FoVPerspectiveCameras,
David Novotny's avatar
David Novotny committed
13
    MonteCarloRaysampler,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
14
15
    MultinomialRaysampler,
    NDCMultinomialRaysampler,
David Novotny's avatar
David Novotny committed
16
17
18
19
20
21
22
23
    OrthographicCameras,
    PerspectiveCameras,
)
from test_raysampling import TestRaysampling


def bm_raysampling() -> None:
    case_grid = {
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
24
25
26
27
28
        "raysampler_type": [
            MultinomialRaysampler,
            NDCMultinomialRaysampler,
            MonteCarloRaysampler,
        ],
David Novotny's avatar
David Novotny committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
        "camera_type": [
            PerspectiveCameras,
            OrthographicCameras,
            FoVPerspectiveCameras,
            FoVOrthographicCameras,
        ],
        "batch_size": [1, 10],
        "n_pts_per_ray": [10, 1000, 10000],
        "image_width": [10, 300],
        "image_height": [10, 300],
    }
    test_cases = itertools.product(*case_grid.values())
    kwargs_list = [dict(zip(case_grid.keys(), case)) for case in test_cases]

    benchmark(TestRaysampling.raysampler, "RAYSAMPLER", kwargs_list, warmup_iters=1)


if __name__ == "__main__":
    bm_raysampling()