test_camera_conversions.py 5.07 KB
Newer Older
Patrick Labatut's avatar
Patrick Labatut committed
1
2
3
4
5
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
David Novotny's avatar
David Novotny committed
6
7
8
9
10
11
12
13
14
15
16
17


import json
import unittest

import numpy as np
import torch
from common_testing import TestCaseMixin, get_tests_dir
from pytorch3d.ops import eyes
from pytorch3d.transforms import so3_exponential_map, so3_log_map
from pytorch3d.utils import (
    cameras_from_opencv_projection,
18
    opencv_from_cameras_projection,
David Novotny's avatar
David Novotny committed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
)

DATA_DIR = get_tests_dir() / "data"


def _coords_opencv_screen_to_pytorch3d_ndc(xy_opencv, image_size):
    """
    Converts the OpenCV screen coordinates `xy_opencv` to PyTorch3D NDC coordinates.
    """
    xy_pytorch3d = -(2.0 * xy_opencv / image_size.flip(dims=(1,))[:, None] - 1.0)
    return xy_pytorch3d


def cv2_project_points(pts, rvec, tvec, camera_matrix):
    """
    Reproduces the `cv2.projectPoints` function from OpenCV using PyTorch.
    """
    R = so3_exponential_map(rvec)
    pts_proj_3d = (
        camera_matrix.bmm(R.bmm(pts.permute(0, 2, 1)) + tvec[:, :, None])
    ).permute(0, 2, 1)
    depth = pts_proj_3d[..., 2:]
    pts_proj_2d = pts_proj_3d[..., :2] / depth
    return pts_proj_2d


class TestCameraConversions(TestCaseMixin, unittest.TestCase):
    def setUp(self) -> None:
        super().setUp()
        torch.manual_seed(42)
        np.random.seed(42)

    def test_cv2_project_points(self):
        """
        Tests that the local implementation of cv2_project_points gives the same
        restults OpenCV's `cv2.projectPoints`. The check is done against a set
        of precomputed results `cv_project_points_precomputed`.
        """
        with open(DATA_DIR / "cv_project_points_precomputed.json", "r") as f:
            cv_project_points_precomputed = json.load(f)

        for test_case in cv_project_points_precomputed:
            _pts_proj = cv2_project_points(
                **{
                    k: torch.tensor(test_case[k])[None]
                    for k in ("pts", "rvec", "tvec", "camera_matrix")
                }
            )
            pts_proj = torch.tensor(test_case["pts_proj"])[None]
            self.assertClose(_pts_proj, pts_proj, atol=1e-4)

    def test_opencv_conversion(self):
        """
        Tests that the cameras converted from opencv to pytorch3d convention
        return correct projections of random 3D points. The check is done
        against a set of results precomuted using `cv2.projectPoints` function.
        """

        image_size = [[480, 640]] * 4
        R = [
            [
                [1.0, 0.0, 0.0],
                [0.0, 1.0, 0.0],
                [0.0, 0.0, 1.0],
            ],
            [
                [1.0, 0.0, 0.0],
                [0.0, 0.0, -1.0],
                [0.0, 1.0, 0.0],
            ],
            [
                [0.0, 0.0, 1.0],
                [1.0, 0.0, 0.0],
                [0.0, 1.0, 0.0],
            ],
            [
                [0.0, 0.0, 1.0],
                [1.0, 0.0, 0.0],
                [0.0, 1.0, 0.0],
            ],
        ]

        tvec = [
            [0.0, 0.0, 3.0],
            [0.3, -0.3, 3.0],
            [-0.15, 0.1, 4.0],
            [0.0, 0.0, 4.0],
        ]
        focal_length = [
            [100.0, 100.0],
            [115.0, 115.0],
            [105.0, 105.0],
            [120.0, 120.0],
        ]
        principal_point = [
            [240, 320],
            [240.5, 320.3],
            [241, 318],
            [242, 322],
        ]

        principal_point, focal_length, R, tvec, image_size = [
            torch.FloatTensor(x)
            for x in (principal_point, focal_length, R, tvec, image_size)
        ]
        camera_matrix = eyes(dim=3, N=4)
        camera_matrix[:, 0, 0], camera_matrix[:, 1, 1] = (
            focal_length[:, 0],
            focal_length[:, 1],
        )
        camera_matrix[:, :2, 2] = principal_point

        rvec = so3_log_map(R)

        pts = torch.nn.functional.normalize(torch.randn(4, 1000, 3), dim=-1)

        # project the 3D points with the opencv projection function
        pts_proj_opencv = cv2_project_points(pts, rvec, tvec, camera_matrix)

        # make the pytorch3d cameras
        cameras_opencv_to_pytorch3d = cameras_from_opencv_projection(
            rvec, tvec, camera_matrix, image_size
        )

        # project the 3D points with converted cameras
        pts_proj_pytorch3d = cameras_opencv_to_pytorch3d.transform_points(pts)[..., :2]

        # convert the opencv-projected points to pytorch3d screen coords
        pts_proj_opencv_in_pytorch3d_screen = _coords_opencv_screen_to_pytorch3d_ndc(
            pts_proj_opencv, image_size
        )

        # compare to the cached projected points
        self.assertClose(
            pts_proj_opencv_in_pytorch3d_screen, pts_proj_pytorch3d, atol=1e-5
        )
155
156
157
158
159
160
161
162

        # Check the inverse.
        rvec_i, tvec_i, camera_matrix_i = opencv_from_cameras_projection(
            cameras_opencv_to_pytorch3d, image_size
        )
        self.assertClose(rvec, rvec_i)
        self.assertClose(tvec, tvec_i)
        self.assertClose(camera_matrix, camera_matrix_i)