test_data_cow.py 2.11 KB
Newer Older
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1
2
3
4
5
6
7
8
9
10
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

import os
import unittest

import torch
11
from pytorch3d.implicitron.dataset.frame_data import FrameData
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
from pytorch3d.implicitron.dataset.rendered_mesh_dataset_map_provider import (
    RenderedMeshDatasetMapProvider,
)
from pytorch3d.implicitron.tools.config import expand_args_fields
from pytorch3d.renderer import FoVPerspectiveCameras
from tests.common_testing import TestCaseMixin


inside_re_worker = os.environ.get("INSIDE_RE_WORKER", False)


class TestDataCow(TestCaseMixin, unittest.TestCase):
    def test_simple(self):
        if inside_re_worker:
            return
        expand_args_fields(RenderedMeshDatasetMapProvider)
        self._runtest(use_point_light=True, num_views=4)
        self._runtest(use_point_light=False, num_views=4)

    def _runtest(self, **kwargs):
        provider = RenderedMeshDatasetMapProvider(**kwargs)
        dataset_map = provider.get_dataset_map()
        known_matrix = torch.zeros(1, 4, 4)
        known_matrix[0, 0, 0] = 1.7321
        known_matrix[0, 1, 1] = 1.7321
        known_matrix[0, 2, 2] = 1.0101
        known_matrix[0, 3, 2] = -1.0101
        known_matrix[0, 2, 3] = 1

        self.assertIsNone(dataset_map.val)
        self.assertIsNone(dataset_map.test)
        self.assertEqual(len(dataset_map.train), provider.num_views)

        value = dataset_map.train[0]
        self.assertIsInstance(value, FrameData)

        self.assertEqual(value.image_rgb.shape, (3, 128, 128))
        self.assertEqual(value.fg_probability.shape, (1, 128, 128))
        # corner of image is background
        self.assertEqual(value.fg_probability[0, 0, 0], 0)
        self.assertEqual(value.fg_probability.max(), 1.0)
        self.assertIsInstance(value.camera, FoVPerspectiveCameras)
        self.assertEqual(len(value.camera), 1)
        self.assertIsNone(value.camera.K)
        matrix = value.camera.get_projection_transform().get_matrix()
        self.assertClose(matrix, known_matrix, atol=1e-4)