implicitron_volumes.ipynb 33.2 KB
Newer Older
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1
2
3
4
{
  "cells": [
    {
      "cell_type": "code",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
5
      "execution_count": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
6
7
      "metadata": {
        "collapsed": false,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
8
        "customInput": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
9
10
        "customOutput": null,
        "executionStartTime": 1659619824914,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
11
12
13
14
        "executionStopTime": 1659619825485,
        "originalKey": "d38652e8-200a-413c-a36a-f4d349b78a9d",
        "requestMsgId": "641de8aa-0e42-4446-9304-c160a2d226bf",
        "showInput": true
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
15
      },
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
16
      "outputs": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
17
18
      "source": [
        "# Copyright (c) Meta Platforms, Inc. and affiliates. All rights reserved."
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
19
      ]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
20
21
    },
    {
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
22
      "attachments": {},
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
23
24
      "cell_type": "markdown",
      "metadata": {
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
25
        "customInput": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
26
        "originalKey": "a48a9dcf-e80f-474b-a0c4-2c9a765b15c5",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
27
        "showInput": false
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
28
29
30
31
32
33
34
      },
      "source": [
        "# A simple model using Implicitron\n",
        "\n",
        "In this demo, we use the VolumeRenderer from PyTorch3D as a custom implicit function in Implicitron. We will see\n",
        "* some of the main objects in Implicitron\n",
        "* how to plug in a custom part of a model"
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
35
      ]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
36
37
    },
    {
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
38
      "attachments": {},
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
39
40
      "cell_type": "markdown",
      "metadata": {
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
41
        "customInput": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
42
        "originalKey": "51337c0e-ad27-4b75-ad6a-737dca5d7b95",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
43
        "showInput": false
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
44
45
46
47
      },
      "source": [
        "## 0. Install and import modules\n",
        "\n",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
48
49
        "Ensure `torch` and `torchvision` are installed. If `pytorch3d` is not installed, install it using the following cell:\n"
      ]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
50
51
52
    },
    {
      "cell_type": "code",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
53
      "execution_count": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
54
55
      "metadata": {
        "collapsed": false,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
56
        "customInput": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
57
58
        "customOutput": null,
        "executionStartTime": 1659619898147,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
59
60
61
62
        "executionStopTime": 1659619898274,
        "originalKey": "76f1ecd4-6b73-4214-81b0-118ef8d86872",
        "requestMsgId": "deb6a860-6923-4227-abef-d31388b5142d",
        "showInput": true
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
63
      },
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
64
      "outputs": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
65
66
67
68
69
70
71
72
73
74
      "source": [
        "import os\n",
        "import sys\n",
        "import torch\n",
        "need_pytorch3d=False\n",
        "try:\n",
        "    import pytorch3d\n",
        "except ModuleNotFoundError:\n",
        "    need_pytorch3d=True\n",
        "if need_pytorch3d:\n",
75
        "    if torch.__version__.startswith(\"1.13.\") and sys.platform.startswith(\"linux\"):\n",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
        "        # We try to install PyTorch3D via a released wheel.\n",
        "        pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
        "        version_str=\"\".join([\n",
        "            f\"py3{sys.version_info.minor}_cu\",\n",
        "            torch.version.cuda.replace(\".\",\"\"),\n",
        "            f\"_pyt{pyt_version_str}\"\n",
        "        ])\n",
        "        !pip install fvcore iopath\n",
        "        !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html\n",
        "    else:\n",
        "        # We try to install PyTorch3D from source.\n",
        "        !curl -LO https://github.com/NVIDIA/cub/archive/1.10.0.tar.gz\n",
        "        !tar xzf 1.10.0.tar.gz\n",
        "        os.environ[\"CUB_HOME\"] = os.getcwd() + \"/cub-1.10.0\"\n",
        "        !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
91
      ]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
92
93
    },
    {
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
94
      "attachments": {},
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
95
96
      "cell_type": "markdown",
      "metadata": {
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
97
        "customInput": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
98
        "originalKey": "2c1020e6-eb4a-4644-9719-9147500d8e4f",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
99
        "showInput": false
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
100
101
      },
      "source": [
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
102
103
        "Ensure omegaconf and visdom are installed. If not, run this cell. (It should not be necessary to restart the runtime.)"
      ]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
104
105
106
    },
    {
      "cell_type": "code",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
107
      "execution_count": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
108
109
      "metadata": {
        "customInput": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
110
111
112
        "customOutput": null,
        "originalKey": "9e751931-a38d-44c9-9ff1-ac2f7d3a3f99",
        "showInput": true
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
113
      },
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
114
      "outputs": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
115
      "source": [
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
116
117
        "!pip install omegaconf visdom"
      ]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
118
119
120
    },
    {
      "cell_type": "code",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
121
      "execution_count": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
122
      "metadata": {
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
123
        "code_folding": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
124
125
126
127
        "collapsed": false,
        "customOutput": null,
        "executionStartTime": 1659612480556,
        "executionStopTime": 1659612480644,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
128
129
130
        "hidden_ranges": [],
        "originalKey": "86807e4a-1675-4520-a033-c7af85b233ec",
        "requestMsgId": "880a7e20-4a90-4b37-a5eb-bccc0b23cac6"
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
131
      },
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
132
      "outputs": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
      "source": [
        "import logging\n",
        "from typing import Tuple\n",
        "\n",
        "import matplotlib.animation as animation\n",
        "import matplotlib.pyplot as plt\n",
        "import numpy as np\n",
        "import torch\n",
        "import tqdm\n",
        "from IPython.display import HTML\n",
        "from omegaconf import OmegaConf\n",
        "from PIL import Image\n",
        "from pytorch3d.implicitron.dataset.dataset_base import FrameData\n",
        "from pytorch3d.implicitron.dataset.rendered_mesh_dataset_map_provider import RenderedMeshDatasetMapProvider\n",
        "from pytorch3d.implicitron.models.generic_model import GenericModel\n",
Darijan Gudelj's avatar
Darijan Gudelj committed
148
        "from pytorch3d.implicitron.models.implicit_function.base import ImplicitFunctionBase, ImplicitronRayBundle\n",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
149
        "from pytorch3d.implicitron.models.renderer.base import EvaluationMode\n",
150
        "from pytorch3d.implicitron.tools.config import get_default_args, registry, remove_unused_components\n",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
151
152
153
        "from pytorch3d.renderer.implicit.renderer import VolumeSampler\n",
        "from pytorch3d.structures import Volumes\n",
        "from pytorch3d.vis.plotly_vis import plot_batch_individually, plot_scene"
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
154
      ]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
155
156
157
    },
    {
      "cell_type": "code",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
158
      "execution_count": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
159
      "metadata": {
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
160
        "code_folding": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
161
        "collapsed": false,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
162
        "customInput": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
163
164
165
        "customOutput": null,
        "executionStartTime": 1659610929375,
        "executionStopTime": 1659610929383,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
166
167
168
169
        "hidden_ranges": [],
        "originalKey": "b2d9f5bd-a9d4-4f78-b21e-92f2658e0fe9",
        "requestMsgId": "7e43e623-4030-438b-af4e-b96170c9a052",
        "showInput": true
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
170
      },
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
171
      "outputs": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
172
173
      "source": [
        "output_resolution = 80"
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
174
      ]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
175
176
177
    },
    {
      "cell_type": "code",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
178
      "execution_count": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
179
      "metadata": {
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
180
        "code_folding": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
181
        "collapsed": false,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
182
        "customInput": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
183
184
185
        "customOutput": null,
        "executionStartTime": 1659610930042,
        "executionStopTime": 1659610930050,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
186
187
188
189
        "hidden_ranges": [],
        "originalKey": "0b0c2087-4c86-4c57-b0ee-6f48a70a9c78",
        "requestMsgId": "46883aad-f00b-4fd4-ac17-eec0b2ac272a",
        "showInput": true
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
190
      },
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
191
      "outputs": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
192
193
      "source": [
        "torch.set_printoptions(sci_mode=False)"
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
194
      ]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
195
196
    },
    {
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
197
      "attachments": {},
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
198
199
      "cell_type": "markdown",
      "metadata": {
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
200
        "customInput": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
201
        "originalKey": "37809d0d-b02e-42df-85b6-cdd038373653",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
202
        "showInput": false
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
203
204
205
206
207
208
209
      },
      "source": [
        "## 1. Load renders of a mesh (the cow mesh) as a dataset\n",
        "\n",
        "A dataset's train, val and test parts in Implicitron are represented as a `dataset_map`, and provided by an implementation of `DatasetMapProvider`. \n",
        "`RenderedMeshDatasetMapProvider` is one which generates a single-scene dataset with only a train component by taking a mesh and rendering it.\n",
        "We use it with the cow mesh."
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
210
      ]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
211
212
    },
    {
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
213
      "attachments": {},
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
214
215
216
      "cell_type": "markdown",
      "metadata": {
        "collapsed": false,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
217
        "customInput": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
218
219
        "customOutput": null,
        "executionStartTime": 1659620739780,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
220
221
222
223
        "executionStopTime": 1659620739914,
        "originalKey": "cc68cb9c-b8bf-4e9e-bef1-2cfafdf6caa2",
        "requestMsgId": "398cfcae-5d43-4b6f-9c75-db3d297364d4",
        "showInput": false
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
224
225
226
227
      },
      "source": [
        "If running this notebook using **Google Colab**, run the following cell to fetch the mesh obj and texture files and save it at the path data/cow_mesh.\n",
        "If running locally, the data is already available at the correct path."
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
228
      ]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
229
230
231
    },
    {
      "cell_type": "code",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
232
      "execution_count": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
233
234
      "metadata": {
        "customInput": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
235
236
237
        "customOutput": null,
        "originalKey": "2c55e002-a885-4169-8fdc-af9078b05968",
        "showInput": true
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
238
      },
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
239
      "outputs": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
240
241
242
243
244
      "source": [
        "!mkdir -p data/cow_mesh\n",
        "!wget -P data/cow_mesh https://dl.fbaipublicfiles.com/pytorch3d/data/cow_mesh/cow.obj\n",
        "!wget -P data/cow_mesh https://dl.fbaipublicfiles.com/pytorch3d/data/cow_mesh/cow.mtl\n",
        "!wget -P data/cow_mesh https://dl.fbaipublicfiles.com/pytorch3d/data/cow_mesh/cow_texture.png"
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
245
      ]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
246
247
248
    },
    {
      "cell_type": "code",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
249
      "execution_count": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
250
      "metadata": {
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
251
        "code_folding": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
252
253
254
255
        "collapsed": false,
        "customOutput": null,
        "executionStartTime": 1659621652237,
        "executionStopTime": 1659621652903,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
256
257
258
259
        "hidden_ranges": [],
        "originalKey": "eb77aaec-048c-40bd-bd69-0e66b6ab60b1",
        "requestMsgId": "09b9975c-ff86-41c9-b4a9-975d23afc562",
        "showInput": true
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
260
      },
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
261
      "outputs": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
262
263
264
265
266
267
      "source": [
        "cow_provider = RenderedMeshDatasetMapProvider(\n",
        "    data_file=\"data/cow_mesh/cow.obj\",\n",
        "    use_point_light=False,\n",
        "    resolution=output_resolution,\n",
        ")"
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
268
      ]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
269
270
271
    },
    {
      "cell_type": "code",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
272
      "execution_count": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
273
      "metadata": {
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
274
        "code_folding": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
275
        "collapsed": false,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
276
        "customInput": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
277
278
279
        "customOutput": null,
        "executionStartTime": 1659610966145,
        "executionStopTime": 1659610966255,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
280
281
282
283
        "hidden_ranges": [],
        "originalKey": "8210e15b-da48-4306-a49a-41c4e7e7d42f",
        "requestMsgId": "c243edd2-a106-4fba-8471-dfa4f99a2088",
        "showInput": true
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
284
      },
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
285
      "outputs": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
286
287
288
      "source": [
        "dataset_map = cow_provider.get_dataset_map()\n",
        "tr_cameras = [training_frame.camera for training_frame in dataset_map.train]"
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
289
      ]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
290
291
292
    },
    {
      "cell_type": "code",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
293
      "execution_count": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
294
      "metadata": {
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
295
        "code_folding": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
296
        "collapsed": false,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
297
        "customInput": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
298
299
300
        "customOutput": null,
        "executionStartTime": 1659610967703,
        "executionStopTime": 1659610967848,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
301
302
303
304
        "hidden_ranges": [],
        "originalKey": "458d72ad-d9a7-4f13-b5b7-90d2aec61c16",
        "requestMsgId": "7f9431f3-8717-4d89-a7fe-1420dd0e00c4",
        "showInput": true
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
305
      },
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
306
      "outputs": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
307
308
309
310
311
      "source": [
        "# The cameras are all in the XZ plane, in a circle about 2.7 from the origin\n",
        "centers = torch.cat([i.get_camera_center() for i in tr_cameras])\n",
        "print(centers.min(0).values)\n",
        "print(centers.max(0).values)"
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
312
      ]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
313
314
315
    },
    {
      "cell_type": "code",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
316
      "execution_count": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
317
      "metadata": {
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
318
        "code_folding": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
319
        "collapsed": false,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
320
        "customInput": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
321
322
323
        "customOutput": null,
        "executionStartTime": 1659552920194,
        "executionStopTime": 1659552923122,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
324
325
326
327
        "hidden_ranges": [],
        "originalKey": "931e712b-b141-437a-97fb-dc2a07ce3458",
        "requestMsgId": "931e712b-b141-437a-97fb-dc2a07ce3458",
        "showInput": true
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
328
      },
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
329
      "outputs": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
330
331
332
333
334
      "source": [
        "# visualization of the cameras\n",
        "plot = plot_scene({\"k\": {i: camera for i, camera in enumerate(tr_cameras)}}, camera_scale=0.25)\n",
        "plot.layout.scene.aspectmode = \"data\"\n",
        "plot"
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
335
      ]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
336
337
    },
    {
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
338
      "attachments": {},
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
339
340
      "cell_type": "markdown",
      "metadata": {
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
341
        "customInput": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
342
        "originalKey": "afa9c02d-f76b-4f68-83e9-9733c615406b",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
343
        "showInput": false
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
344
345
346
347
348
349
350
351
352
353
354
355
356
      },
      "source": [
        "## 2. Custom implicit function 🧊\n",
        "\n",
        "At the core of neural rendering methods are functions of spatial coordinates called implicit functions, which are used in some kind of rendering process.\n",
        "(Often those functions can additionally take other data as well, such as view direction.)\n",
        "A common rendering process is ray marching over densities and colors provided by an implicit function.\n",
        "In our case, taking samples from a 3D volume grid is a very simple function of spatial coordinates. \n",
        "\n",
        "Here we define our own implicit function, which uses PyTorch3D's existing functionality for sampling from a volume grid.\n",
        "We do this by subclassing `ImplicitFunctionBase`.\n",
        "We need to register our subclass with a special decorator.\n",
        "We use Python's dataclass annotations for configuring the module."
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
357
      ]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
358
359
360
    },
    {
      "cell_type": "code",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
361
      "execution_count": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
362
      "metadata": {
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
363
        "code_folding": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
364
        "collapsed": false,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
365
        "customInput": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
366
367
368
        "customOutput": null,
        "executionStartTime": 1659613575850,
        "executionStopTime": 1659613575940,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
369
370
371
372
        "hidden_ranges": [],
        "originalKey": "61b55043-dc52-4de7-992e-e2195edd2123",
        "requestMsgId": "dfaace3c-098c-4ffe-9240-6a7ae0ff271e",
        "showInput": true
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
373
      },
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
374
      "outputs": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
      "source": [
        "@registry.register\n",
        "class MyVolumes(ImplicitFunctionBase, torch.nn.Module):\n",
        "    grid_resolution: int = 50  # common HWD of volumes, the number of voxels in each direction\n",
        "    extent: float = 1.0  # In world coordinates, the volume occupies is [-extent, extent] along each axis\n",
        "\n",
        "    def __post_init__(self):\n",
        "        # We have to call this explicitly if there are other base classes like Module\n",
        "        super().__init__()\n",
        "\n",
        "        # We define parameters like other torch.nn.Module objects.\n",
        "        # In this case, both our parameter tensors are trainable; they govern the contents of the volume grid.\n",
        "        density = torch.full((self.grid_resolution, self.grid_resolution, self.grid_resolution), -2.0)\n",
        "        self.density = torch.nn.Parameter(density)\n",
        "        color = torch.full((3, self.grid_resolution, self.grid_resolution, self.grid_resolution), 0.0)\n",
        "        self.color = torch.nn.Parameter(color)\n",
        "        self.density_activation = torch.nn.Softplus()\n",
        "\n",
        "    def forward(\n",
        "        self,\n",
Darijan Gudelj's avatar
Darijan Gudelj committed
395
        "        ray_bundle: ImplicitronRayBundle,\n",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
        "        fun_viewpool=None,\n",
        "        global_code=None,\n",
        "    ):\n",
        "        densities = self.density_activation(self.density[None, None])\n",
        "        voxel_size = 2.0 * float(self.extent) / self.grid_resolution\n",
        "        features = self.color.sigmoid()[None]\n",
        "\n",
        "        # Like other PyTorch3D structures, the actual Volumes object should only exist as long\n",
        "        # as one iteration of training. It is local to this function.\n",
        "\n",
        "        volume = Volumes(densities=densities, features=features, voxel_size=voxel_size)\n",
        "        sampler = VolumeSampler(volumes=volume)\n",
        "        densities, features = sampler(ray_bundle)\n",
        "\n",
        "        # When an implicit function is used for raymarching, i.e. for MultiPassEmissionAbsorptionRenderer,\n",
        "        # it must return (densities, features, an auxiliary tuple)\n",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
412
413
        "        return densities, features, {}\n"
      ]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
414
415
    },
    {
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
416
      "attachments": {},
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
417
418
      "cell_type": "markdown",
      "metadata": {
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
419
        "customInput": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
420
        "originalKey": "abaf2cd6-1b68-400e-a142-8fb9f49953f3",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
421
        "showInput": false
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
422
423
424
425
426
427
      },
      "source": [
        "## 3. Construct the model object.\n",
        "\n",
        "The main model object in PyTorch3D is `GenericModel`, which has pluggable components for the major steps, including the renderer and the implicit function(s).\n",
        "There are two ways to construct it which are equivalent here."
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
428
      ]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
429
430
431
    },
    {
      "cell_type": "code",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
432
      "execution_count": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
433
434
      "metadata": {
        "collapsed": false,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
435
        "customInput": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
436
437
        "customOutput": null,
        "executionStartTime": 1659621267561,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
438
439
440
441
        "executionStopTime": 1659621267938,
        "originalKey": "f26c3dce-fbae-4592-bd0e-e4a8abc57c2c",
        "requestMsgId": "9213687e-1caf-46a8-a4e5-a9c531530092",
        "showInput": true
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
442
      },
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
443
      "outputs": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
      "source": [
        "CONSTRUCT_MODEL_FROM_CONFIG = True\n",
        "if CONSTRUCT_MODEL_FROM_CONFIG:\n",
        "    # Via a DictConfig - this is how our training loop with hydra works\n",
        "    cfg = get_default_args(GenericModel)\n",
        "    cfg.implicit_function_class_type = \"MyVolumes\"\n",
        "    cfg.render_image_height=output_resolution\n",
        "    cfg.render_image_width=output_resolution\n",
        "    cfg.loss_weights={\"loss_rgb_huber\": 1.0}\n",
        "    cfg.tqdm_trigger_threshold=19000\n",
        "    cfg.raysampler_AdaptiveRaySampler_args.scene_extent= 4.0\n",
        "    gm = GenericModel(**cfg)\n",
        "else:\n",
        "    # constructing GenericModel directly\n",
        "    gm = GenericModel(\n",
        "        implicit_function_class_type=\"MyVolumes\",\n",
        "        render_image_height=output_resolution,\n",
        "        render_image_width=output_resolution,\n",
        "        loss_weights={\"loss_rgb_huber\": 1.0},\n",
        "        tqdm_trigger_threshold=19000,\n",
        "        raysampler_AdaptiveRaySampler_args = {\"scene_extent\": 4.0}\n",
        "    )\n",
        "\n",
        "    # In this case we can get the equivalent DictConfig cfg object to the way gm is configured as follows\n",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
468
469
        "    cfg = OmegaConf.structured(gm)\n"
      ]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
470
471
    },
    {
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
472
      "attachments": {},
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
473
474
      "cell_type": "markdown",
      "metadata": {
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
475
        "code_folding": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
476
        "collapsed": false,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
477
        "customInput": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
478
479
480
        "customOutput": null,
        "executionStartTime": 1659611214689,
        "executionStopTime": 1659611214748,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
481
482
483
484
        "hidden_ranges": [],
        "originalKey": "4e659f7d-ce66-4999-83de-005eb09d7705",
        "requestMsgId": "7b815b2b-cf19-44d0-ae89-76fde6df35ec",
        "showInput": false
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
485
486
487
      },
      "source": [
        " The default renderer is an emission-absorbtion raymarcher. We keep that default."
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
488
      ]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
489
490
491
    },
    {
      "cell_type": "code",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
492
      "execution_count": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
493
      "metadata": {
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
494
        "code_folding": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
495
        "collapsed": false,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
496
        "customInput": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
497
498
499
        "customOutput": null,
        "executionStartTime": 1659621268007,
        "executionStopTime": 1659621268190,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
500
501
502
503
        "hidden_ranges": [],
        "originalKey": "d37ae488-c57c-44d3-9def-825dc1a6495b",
        "requestMsgId": "71143ec1-730f-4876-8a14-e46eea9d6dd1",
        "showInput": true
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
504
      },
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
505
      "outputs": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
506
507
508
509
510
      "source": [
        "# We can display the configuration in use as follows.\n",
        "remove_unused_components(cfg)\n",
        "yaml = OmegaConf.to_yaml(cfg, sort_keys=False)\n",
        "%page -r yaml"
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
511
      ]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
512
513
514
    },
    {
      "cell_type": "code",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
515
      "execution_count": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
516
      "metadata": {
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
517
        "code_folding": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
518
        "collapsed": false,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
519
        "customInput": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
520
521
522
        "customOutput": null,
        "executionStartTime": 1659621268727,
        "executionStopTime": 1659621268776,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
523
524
525
526
        "hidden_ranges": [],
        "originalKey": "52e53179-3c6e-4c1f-a38a-3a6d803687bb",
        "requestMsgId": "05de9bc3-3f74-4a6f-851c-9ec919b59506",
        "showInput": true
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
527
      },
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
528
      "outputs": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
529
530
531
532
      "source": [
        "device = torch.device(\"cuda:0\")\n",
        "gm.to(device)\n",
        "assert next(gm.parameters()).is_cuda"
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
533
      ]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
534
535
536
537
    },
    {
      "cell_type": "markdown",
      "metadata": {
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
538
        "customInput": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
539
        "originalKey": "528a7d53-c645-49c2-9021-09adbb18cd23",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
540
        "showInput": false
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
541
542
543
544
545
546
547
      },
      "source": [
        "## 4. train the model "
      ]
    },
    {
      "cell_type": "code",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
548
      "execution_count": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
549
      "metadata": {
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
550
        "code_folding": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
551
        "collapsed": false,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
552
        "customInput": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
553
554
555
        "customOutput": null,
        "executionStartTime": 1659621270236,
        "executionStopTime": 1659621270446,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
556
557
558
559
        "hidden_ranges": [],
        "originalKey": "953280bd-3161-42ba-8dcb-0c8ef2d5cc25",
        "requestMsgId": "9bba424b-7bfd-4e5a-9d79-ae316e20bab0",
        "showInput": true
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
560
      },
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
561
      "outputs": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
562
563
      "source": [
        "train_data_collated = [FrameData.collate([frame.to(device)]) for frame in dataset_map.train]"
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
564
      ]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
565
566
567
    },
    {
      "cell_type": "code",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
568
      "execution_count": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
569
      "metadata": {
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
570
        "code_folding": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
571
        "collapsed": false,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
572
        "customInput": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
573
574
575
        "customOutput": null,
        "executionStartTime": 1659621270815,
        "executionStopTime": 1659621270948,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
576
577
578
579
        "hidden_ranges": [],
        "originalKey": "2fcf07f0-0c28-49c7-8c76-1c9a9d810167",
        "requestMsgId": "821deb43-6084-4ece-83c3-dee214562c47",
        "showInput": true
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
580
      },
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
581
      "outputs": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
582
583
584
      "source": [
        "gm.train()\n",
        "optimizer = torch.optim.Adam(gm.parameters(), lr=0.1)"
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
585
      ]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
586
587
588
    },
    {
      "cell_type": "code",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
589
      "execution_count": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
590
      "metadata": {
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
591
        "code_folding": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
592
593
594
595
        "collapsed": false,
        "customOutput": null,
        "executionStartTime": 1659621271875,
        "executionStopTime": 1659621298146,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
596
597
598
599
        "hidden_ranges": [],
        "originalKey": "105099f7-ed0c-4e7f-a976-61a93fd0a8fe",
        "requestMsgId": "0c87c108-83e3-4129-ad02-85e0140f1368",
        "showInput": true
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
600
      },
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
601
      "outputs": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
602
603
604
605
606
607
608
609
610
611
612
      "source": [
        "iterator = tqdm.tqdm(range(2000))\n",
        "for n_batch in iterator:\n",
        "    optimizer.zero_grad()\n",
        "\n",
        "    frame = train_data_collated[n_batch % len(dataset_map.train)]\n",
        "    out = gm(**frame, evaluation_mode=EvaluationMode.TRAINING)\n",
        "    out[\"objective\"].backward()\n",
        "    if n_batch % 100 == 0:\n",
        "        iterator.set_postfix_str(f\"loss: {float(out['objective']):.5f}\")\n",
        "    optimizer.step()"
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
613
      ]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
614
615
    },
    {
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
616
      "attachments": {},
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
617
618
619
      "cell_type": "markdown",
      "metadata": {
        "collapsed": false,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
620
        "customInput": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
621
622
        "customOutput": null,
        "executionStartTime": 1659535024768,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
623
624
625
626
        "executionStopTime": 1659535024906,
        "originalKey": "e3cd494a-536b-48bc-8290-c048118c82eb",
        "requestMsgId": "e3cd494a-536b-48bc-8290-c048118c82eb",
        "showInput": false
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
627
628
629
630
631
      },
      "source": [
        "## 5. Evaluate the module\n",
        "\n",
        "We generate complete images from all the viewpoints to see how they look."
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
632
      ]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
633
634
635
    },
    {
      "cell_type": "code",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
636
      "execution_count": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
637
      "metadata": {
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
638
        "code_folding": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
639
        "collapsed": false,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
640
        "customInput": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
641
642
643
        "customOutput": null,
        "executionStartTime": 1659621299859,
        "executionStopTime": 1659621311133,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
644
645
646
647
        "hidden_ranges": [],
        "originalKey": "fbe1b2ea-cc24-4b20-a2d7-0249185e34a5",
        "requestMsgId": "771ef1f8-5eee-4932-9e81-33604bf0512a",
        "showInput": true
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
648
      },
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
649
      "outputs": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
      "source": [
        "def to_numpy_image(image):\n",
        "    # Takes an image of shape (C, H, W) in [0,1], where C=3 or 1\n",
        "    # to a numpy uint image of shape (H, W, 3)\n",
        "    return (image * 255).to(torch.uint8).permute(1, 2, 0).detach().cpu().expand(-1, -1, 3).numpy()\n",
        "def resize_image(image):\n",
        "    # Takes images of shape (B, C, H, W) to (B, C, output_resolution, output_resolution)\n",
        "    return torch.nn.functional.interpolate(image, size=(output_resolution, output_resolution))\n",
        "\n",
        "gm.eval()\n",
        "images = []\n",
        "expected = []\n",
        "masks = []\n",
        "masks_expected = []\n",
        "for frame in tqdm.tqdm(train_data_collated):\n",
        "    with torch.no_grad():\n",
        "        out = gm(**frame, evaluation_mode=EvaluationMode.EVALUATION)\n",
        "\n",
        "    image_rgb = to_numpy_image(out[\"images_render\"][0])\n",
        "    mask = to_numpy_image(out[\"masks_render\"][0])\n",
        "    expd = to_numpy_image(resize_image(frame.image_rgb)[0])\n",
        "    mask_expected = to_numpy_image(resize_image(frame.fg_probability)[0])\n",
        "\n",
        "    images.append(image_rgb)\n",
        "    masks.append(mask)\n",
        "    expected.append(expd)\n",
        "    masks_expected.append(mask_expected)"
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
677
      ]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
678
679
    },
    {
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
680
      "attachments": {},
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
681
682
683
      "cell_type": "markdown",
      "metadata": {
        "collapsed": false,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
684
        "customInput": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
685
686
        "customOutput": null,
        "executionStartTime": 1659614622542,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
687
688
689
690
        "executionStopTime": 1659614622757,
        "originalKey": "24953039-9780-40fd-bd81-5d63e9f40069",
        "requestMsgId": "7af895a3-dfe4-4c28-ac3b-4ff0fbb40c7f",
        "showInput": false
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
      },
      "source": [
        "We draw a grid showing predicted image and expected image, followed by predicted mask and expected mask, from each viewpoint. \n",
        "This is a grid of four rows of images, wrapped in to several large rows, i.e..\n",
        "<small><center>\n",
        "```\n",
        "┌────────┬────────┐           ┌────────┐\n",
        "│pred    │pred    │           │pred    │\n",
        "│image   │image   │           │image   │\n",
        "│1       │2       │           │n       │\n",
        "├────────┼────────┤           ├────────┤\n",
        "│expected│expected│           │expected│\n",
        "│image   │image   │  ...      │image   │\n",
        "│1       │2       │           │n       │\n",
        "├────────┼────────┤           ├────────┤\n",
        "│pred    │pred    │           │pred    │\n",
        "│mask    │mask    │           │mask    │\n",
        "│1       │2       │           │n       │\n",
        "├────────┼────────┤           ├────────┤\n",
        "│expected│expected│           │expected│\n",
        "│mask    │mask    │           │mask    │\n",
        "│1       │2       │           │n       │\n",
        "├────────┼────────┤           ├────────┤\n",
        "│pred    │pred    │           │pred    │\n",
        "│image   │image   │           │image   │\n",
        "│n+1     │n+1     │           │2n      │\n",
        "├────────┼────────┤           ├────────┤\n",
        "│expected│expected│           │expected│\n",
        "│image   │image   │  ...      │image   │\n",
        "│n+1     │n+2     │           │2n      │\n",
        "├────────┼────────┤           ├────────┤\n",
        "│pred    │pred    │           │pred    │\n",
        "│mask    │mask    │           │mask    │\n",
        "│n+1     │n+2     │           │2n      │\n",
        "├────────┼────────┤           ├────────┤\n",
        "│expected│expected│           │expected│\n",
        "│mask    │mask    │           │mask    │\n",
        "│n+1     │n+2     │           │2n      │\n",
        "└────────┴────────┘           └────────┘\n",
        "           ...\n",
        "```\n",
        "</center></small>"
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
733
      ]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
734
735
736
    },
    {
      "cell_type": "code",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
737
      "execution_count": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
738
      "metadata": {
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
739
        "code_folding": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
740
        "collapsed": false,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
741
        "customInput": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
742
743
744
        "customOutput": null,
        "executionStartTime": 1659621313894,
        "executionStopTime": 1659621314042,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
745
746
747
748
        "hidden_ranges": [],
        "originalKey": "c488a34a-e46d-4649-93fb-4b1bb5a0e439",
        "requestMsgId": "4221e632-fca1-4fe5-b2e3-f92c37aa40e4",
        "showInput": true
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
749
      },
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
750
      "outputs": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
      "source": [
        "images_to_display = [images.copy(), expected.copy(), masks.copy(), masks_expected.copy()]\n",
        "n_rows = 4\n",
        "n_images = len(images)\n",
        "blank_image = images[0] * 0\n",
        "n_per_row = 1+(n_images-1)//n_rows\n",
        "for _ in range(n_per_row*n_rows - n_images):\n",
        "    for group in images_to_display:\n",
        "        group.append(blank_image)\n",
        "\n",
        "images_to_display_listed = [[[i] for i in j] for j in images_to_display]\n",
        "split = []\n",
        "for row in range(n_rows):\n",
        "    for group in images_to_display_listed:\n",
        "        split.append(group[row*n_per_row:(row+1)*n_per_row])  \n",
        "\n",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
767
768
        "Image.fromarray(np.block(split))\n"
      ]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
769
770
771
    },
    {
      "cell_type": "code",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
772
      "execution_count": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
773
      "metadata": {
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
774
        "code_folding": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
775
        "collapsed": false,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
776
        "customInput": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
777
778
779
        "customOutput": null,
        "executionStartTime": 1659621323795,
        "executionStopTime": 1659621323820,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
780
781
782
783
        "hidden_ranges": [],
        "originalKey": "49eab9e1-4fe2-4fbe-b4f3-7b6953340170",
        "requestMsgId": "85b402ad-f903-431f-a13e-c2d697e869bb",
        "showInput": true
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
784
      },
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
785
      "outputs": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
786
787
788
      "source": [
        "# Print the maximum channel intensity in the first image.\n",
        "print(images[1].max()/255)"
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
789
      ]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
790
791
792
    },
    {
      "cell_type": "code",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
793
      "execution_count": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
794
      "metadata": {
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
795
796
        "code_folding": [],
        "collapsed": false,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
797
798
        "customInput": null,
        "customOutput": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
799
800
        "executionStartTime": 1659621408642,
        "executionStopTime": 1659621409559,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
801
        "hidden_ranges": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
802
        "originalKey": "137d2c43-d39d-4266-ac5e-2b714da5e0ee",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
803
        "requestMsgId": "8e27ec57-c2d6-4ae0-be69-b63b6af929ff",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
804
        "showInput": true
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
805
      },
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
806
      "outputs": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
807
808
809
810
811
812
813
      "source": [
        "plt.ioff()\n",
        "fig, ax = plt.subplots(figsize=(3,3))\n",
        "\n",
        "ax.grid(None)\n",
        "ims = [[ax.imshow(im, animated=True)] for im in images]\n",
        "ani = animation.ArtistAnimation(fig, ims, interval=80, blit=True)\n",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
814
815
        "ani_html = ani.to_jshtml()\n"
      ]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
816
817
818
    },
    {
      "cell_type": "code",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
819
      "execution_count": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
820
821
      "metadata": {
        "collapsed": false,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
822
        "customInput": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
823
824
        "customOutput": null,
        "executionStartTime": 1659621409620,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
825
826
827
828
        "executionStopTime": 1659621409725,
        "originalKey": "783e70d6-7cf1-4d76-a126-ba11ffc2f5be",
        "requestMsgId": "b6843506-c5fa-4508-80fc-8ecae51a934a",
        "showInput": true
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
829
      },
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
830
      "outputs": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
831
832
      "source": [
        "HTML(ani_html)"
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
833
      ]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
834
835
836
    },
    {
      "cell_type": "code",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
837
      "execution_count": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
838
839
      "metadata": {
        "collapsed": false,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
840
        "customInput": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
841
842
        "customOutput": null,
        "executionStartTime": 1659614670081,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
843
844
845
846
        "executionStopTime": 1659614670168,
        "originalKey": "0286c350-2362-4f47-8181-2fc2ba51cfcf",
        "requestMsgId": "976f4db9-d4c7-466c-bcfd-218234400226",
        "showInput": true
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
847
      },
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
848
      "outputs": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
849
850
851
852
      "source": [
        "# If you want to see the output of the model with the volume forced to opaque white, run this and re-evaluate\n",
        "# with torch.no_grad():\n",
        "#      gm._implicit_functions[0]._fn.density.fill_(9.0)\n",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
853
854
        "#      gm._implicit_functions[0]._fn.color.fill_(9.0)\n"
      ]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
855
    }
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
  ],
  "metadata": {
    "bento_stylesheets": {
      "bento/extensions/flow/main.css": true,
      "bento/extensions/kernel_selector/main.css": true,
      "bento/extensions/kernel_ui/main.css": true,
      "bento/extensions/new_kernel/main.css": true,
      "bento/extensions/system_usage/main.css": true,
      "bento/extensions/theme/main.css": true
    },
    "captumWidgetMessage": {},
    "dataExplorerConfig": {},
    "kernelspec": {
      "display_name": "pytorch3d",
      "language": "python",
      "metadata": {
        "cinder_runtime": false,
        "fbpkg_supported": true,
        "is_prebuilt": true,
        "kernel_name": "bento_kernel_pytorch3d",
        "nightly_builds": true
      },
      "name": "bento_kernel_pytorch3d"
    },
    "language_info": {
      "codemirror_mode": {
        "name": "ipython",
        "version": 3
      },
      "file_extension": ".py",
      "mimetype": "text/x-python",
      "name": "python",
      "nbconvert_exporter": "python",
      "pygments_lexer": "ipython3"
    },
    "last_base_url": "https://9177.od.fbinfra.net:443/",
    "last_kernel_id": "bb33cd83-7924-489a-8bd8-2d9d62eb0126",
    "last_msg_id": "99f7088e-d22b355b859660479ef0574e_5743",
    "last_server_session_id": "2944b203-9ea8-4c0e-9634-645dfea5f26b",
    "outputWidgetContext": {}
  },
  "nbformat": 4,
  "nbformat_minor": 2
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
899
}