test_struct_utils.py 7.57 KB
Newer Older
facebook-github-bot's avatar
facebook-github-bot committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.


import unittest
import torch

from pytorch3d.structures import utils as struct_utils

from common_testing import TestCaseMixin


class TestStructUtils(TestCaseMixin, unittest.TestCase):
    def test_list_to_padded(self):
        device = torch.device("cuda:0")
        N = 5
        K = 20
        ndim = 2
        x = []
        for _ in range(N):
            dims = torch.randint(K, size=(ndim,)).tolist()
            x.append(torch.rand(dims, device=device))
        pad_size = [K] * ndim
        x_padded = struct_utils.list_to_padded(
            x, pad_size=pad_size, pad_value=0.0, equisized=False
        )

        self.assertEqual(x_padded.shape[1], K)
        self.assertEqual(x_padded.shape[2], K)
        for i in range(N):
            self.assertClose(
                x_padded[i, : x[i].shape[0], : x[i].shape[1]], x[i]
            )

        # check for no pad size (defaults to max dimension)
        x_padded = struct_utils.list_to_padded(
            x, pad_value=0.0, equisized=False
        )
        max_size0 = max(y.shape[0] for y in x)
        max_size1 = max(y.shape[1] for y in x)
        self.assertEqual(x_padded.shape[1], max_size0)
        self.assertEqual(x_padded.shape[2], max_size1)
        for i in range(N):
            self.assertClose(
                x_padded[i, : x[i].shape[0], : x[i].shape[1]], x[i]
            )

        # check for equisized
        x = [torch.rand((K, 10), device=device) for _ in range(N)]
        x_padded = struct_utils.list_to_padded(x, equisized=True)
        self.assertClose(x_padded, torch.stack(x, 0))

        # catch ValueError for invalid dimensions
        with self.assertRaisesRegex(ValueError, "Pad size must"):
            pad_size = [K] * 4
            struct_utils.list_to_padded(
                x, pad_size=pad_size, pad_value=0.0, equisized=False
            )

        # invalid input tensor dimensions
        x = []
        ndim = 3
        for _ in range(N):
            dims = torch.randint(K, size=(ndim,)).tolist()
            x.append(torch.rand(dims, device=device))
        pad_size = [K] * 2
        with self.assertRaisesRegex(ValueError, "Supports only"):
            x_padded = struct_utils.list_to_padded(
                x, pad_size=pad_size, pad_value=0.0, equisized=False
            )

    def test_padded_to_list(self):
        device = torch.device("cuda:0")
        N = 5
        K = 20
        ndim = 2
        dims = [K] * ndim
        x = torch.rand([N] + dims, device=device)

        x_list = struct_utils.padded_to_list(x)
        for i in range(N):
            self.assertClose(x_list[i], x[i])

        split_size = torch.randint(1, K, size=(N,)).tolist()
        x_list = struct_utils.padded_to_list(x, split_size)
        for i in range(N):
            self.assertClose(x_list[i], x[i, : split_size[i]])

        split_size = torch.randint(1, K, size=(2 * N,)).view(N, 2).unbind(0)
        x_list = struct_utils.padded_to_list(x, split_size)
        for i in range(N):
            self.assertClose(
                x_list[i], x[i, : split_size[i][0], : split_size[i][1]]
            )

        with self.assertRaisesRegex(ValueError, "Supports only"):
            x = torch.rand((N, K, K, K, K), device=device)
            split_size = torch.randint(1, K, size=(N,)).tolist()
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
            struct_utils.padded_to_list(x, split_size)

    def test_padded_to_packed(self):
        device = torch.device("cuda:0")
        N = 5
        K = 20
        ndim = 2
        dims = [K] * ndim
        x = torch.rand([N] + dims, device=device)

        # Case 1: no split_size or pad_value provided
        # Check output is just the flattened input.
        x_packed = struct_utils.padded_to_packed(x)
        self.assertTrue(x_packed.shape == (x.shape[0] * x.shape[1], x.shape[2]))
        self.assertClose(x_packed, x.reshape(-1, K))

        # Case 2: pad_value is provided.
        # Check each section of the packed tensor matches the
        # corresponding unpadded elements of the padded tensor.
        # Check that only rows where all the values are padded
        # are removed in the conversion to packed.
        pad_value = -1
        x_list = []
        split_size = []
        for _ in range(N):
            dim = torch.randint(K, size=(1,)).item()
            # Add some random values in the input which are the same as the pad_value.
            # These should not be filtered out.
            x_list.append(
                torch.randint(
                    low=pad_value, high=10, size=(dim, K), device=device
                )
            )
            split_size.append(dim)
        x_padded = struct_utils.list_to_padded(x_list, pad_value=pad_value)
        x_packed = struct_utils.padded_to_packed(x_padded, pad_value=pad_value)
        curr = 0
        for i in range(N):
            self.assertClose(
                x_packed[curr : curr + split_size[i], ...], x_list[i]
            )
            self.assertClose(torch.cat(x_list), x_packed)
            curr += split_size[i]

        # Case 3: split_size is provided.
        # Check each section of the packed tensor matches the corresponding
        # unpadded elements.
        x_packed = struct_utils.padded_to_packed(
            x_padded, split_size=split_size
        )
        curr = 0
        for i in range(N):
            self.assertClose(
                x_packed[curr : curr + split_size[i], ...], x_list[i]
            )
            self.assertClose(torch.cat(x_list), x_packed)
            curr += split_size[i]

        # Case 4: split_size of the wrong shape is provided.
        # Raise an error.
        split_size = torch.randint(1, K, size=(2 * N,)).view(N, 2).unbind(0)
        with self.assertRaisesRegex(ValueError, "1-dimensional"):
            x_packed = struct_utils.padded_to_packed(
                x_padded, split_size=split_size
            )

        split_size = torch.randint(1, K, size=(2 * N,)).view(N * 2).tolist()
        with self.assertRaisesRegex(
            ValueError, "same length as inputs first dimension"
        ):
            x_packed = struct_utils.padded_to_packed(
                x_padded, split_size=split_size
            )

        # Case 5: both pad_value and split_size are provided.
        # Raise an error.
        with self.assertRaisesRegex(ValueError, "Only one of"):
            x_packed = struct_utils.padded_to_packed(
                x_padded, split_size=split_size, pad_value=-1
            )

        # Case 6: Input has more than 3 dims.
        # Raise an error.
        with self.assertRaisesRegex(ValueError, "Supports only"):
            x = torch.rand((N, K, K, K, K), device=device)
            split_size = torch.randint(1, K, size=(N,)).tolist()
facebook-github-bot's avatar
facebook-github-bot committed
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
            struct_utils.padded_to_list(x, split_size)

    def test_list_to_packed(self):
        device = torch.device("cuda:0")
        N = 5
        K = 20
        x, x_dims = [], []
        dim2 = torch.randint(K, size=(1,)).item()
        for _ in range(N):
            dim1 = torch.randint(K, size=(1,)).item()
            x_dims.append(dim1)
            x.append(torch.rand([dim1, dim2], device=device))

        out = struct_utils.list_to_packed(x)
        x_packed = out[0]
        num_items = out[1]
        item_packed_first_idx = out[2]
        item_packed_to_list_idx = out[3]

        cur = 0
        for i in range(N):
            self.assertTrue(num_items[i] == x_dims[i])
            self.assertTrue(item_packed_first_idx[i] == cur)
            self.assertTrue(
                item_packed_to_list_idx[cur : cur + x_dims[i]].eq(i).all()
            )
            self.assertClose(x_packed[cur : cur + x_dims[i]], x[i])
            cur += x_dims[i]