bm_packed_to_padded.py 1.11 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.


from itertools import product
import torch
from fvcore.common.benchmark import benchmark

from test_packed_to_padded import TestPackedToPadded


def bm_packed_to_padded() -> None:
    kwargs_list = []
    backend = ["cpu"]
    if torch.cuda.is_available():
        backend.append("cuda:0")

    num_meshes = [2, 10, 32]
    num_verts = [100, 1000]
    num_faces = [300, 3000]
    num_ds = [0, 1, 16]

    test_cases = product(num_meshes, num_verts, num_faces, num_ds, backend)
    for case in test_cases:
        n, v, f, d, b = case
        kwargs_list.append(
            {
                "num_meshes": n,
                "num_verts": v,
                "num_faces": f,
                "num_d": d,
                "device": b,
            }
        )
    benchmark(
        TestPackedToPadded.packed_to_padded_with_init,
        "PACKED_TO_PADDED",
        kwargs_list,
        warmup_iters=1,
    )

    benchmark(
        TestPackedToPadded.packed_to_padded_with_init_torch,
        "PACKED_TO_PADDED_TORCH",
        kwargs_list,
        warmup_iters=1,
    )