test_raysampling.py 14.5 KB
Newer Older
David Novotny's avatar
David Novotny committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.

import unittest

import torch
from common_testing import TestCaseMixin
from pytorch3d.ops import eyes
from pytorch3d.renderer import GridRaysampler, MonteCarloRaysampler, NDCGridRaysampler
from pytorch3d.renderer.cameras import (
    FoVOrthographicCameras,
    FoVPerspectiveCameras,
    OrthographicCameras,
    PerspectiveCameras,
)
from pytorch3d.renderer.implicit.utils import (
    ray_bundle_to_ray_points,
    ray_bundle_variables_to_ray_points,
)
from pytorch3d.transforms import Rotate
from test_cameras import init_random_cameras


class TestRaysampling(TestCaseMixin, unittest.TestCase):
    def setUp(self) -> None:
        torch.manual_seed(42)

    @staticmethod
    def raysampler(
        raysampler_type=GridRaysampler,
        camera_type=PerspectiveCameras,
        n_pts_per_ray=10,
        batch_size=1,
        image_width=10,
        image_height=20,
    ):

        device = torch.device("cuda")

        # init raysamplers
        raysampler = TestRaysampling.init_raysampler(
            raysampler_type=raysampler_type,
            min_x=-1.0,
            max_x=1.0,
            min_y=-1.0,
            max_y=1.0,
            image_width=image_width,
            image_height=image_height,
            min_depth=1.0,
            max_depth=10.0,
            n_pts_per_ray=n_pts_per_ray,
        ).to(device)

        # init a batch of random cameras
        cameras = init_random_cameras(camera_type, batch_size, random_z=True).to(device)

        def run_raysampler():
            raysampler(cameras=cameras)
            torch.cuda.synchronize()

        return run_raysampler

    @staticmethod
    def init_raysampler(
        raysampler_type=GridRaysampler,
        min_x=-1.0,
        max_x=1.0,
        min_y=-1.0,
        max_y=1.0,
        image_width=10,
        image_height=20,
        min_depth=1.0,
        max_depth=10.0,
        n_pts_per_ray=10,
    ):
        raysampler_params = {
            "min_x": min_x,
            "max_x": max_x,
            "min_y": min_y,
            "max_y": max_y,
            "n_pts_per_ray": n_pts_per_ray,
            "min_depth": min_depth,
            "max_depth": max_depth,
        }

        if issubclass(raysampler_type, GridRaysampler):
            raysampler_params.update(
                {"image_width": image_width, "image_height": image_height}
            )
        elif issubclass(raysampler_type, MonteCarloRaysampler):
            raysampler_params["n_rays_per_image"] = image_width * image_height
        else:
            raise ValueError(str(raysampler_type))

        if issubclass(raysampler_type, NDCGridRaysampler):
            # NDCGridRaysampler does not use min/max_x/y
            for k in ("min_x", "max_x", "min_y", "max_y"):
                del raysampler_params[k]

        # instantiate the raysampler
        raysampler = raysampler_type(**raysampler_params)

        return raysampler

    def test_raysamplers(
        self,
        batch_size=25,
        min_x=-1.0,
        max_x=1.0,
        min_y=-1.0,
        max_y=1.0,
        image_width=10,
        image_height=20,
        min_depth=1.0,
        max_depth=10.0,
    ):
        """
        Tests the shapes and outputs of MC and GridRaysamplers for randomly
        generated cameras and different numbers of points per ray.
        """

        device = torch.device("cuda")

        for n_pts_per_ray in (100, 1):

            for raysampler_type in (
                MonteCarloRaysampler,
                GridRaysampler,
                NDCGridRaysampler,
            ):

                raysampler = TestRaysampling.init_raysampler(
                    raysampler_type=raysampler_type,
                    min_x=min_x,
                    max_x=max_x,
                    min_y=min_y,
                    max_y=max_y,
                    image_width=image_width,
                    image_height=image_height,
                    min_depth=min_depth,
                    max_depth=max_depth,
                    n_pts_per_ray=n_pts_per_ray,
                )

                if issubclass(raysampler_type, NDCGridRaysampler):
                    # adjust the gt bounds for NDCGridRaysampler
                    half_pix_width = 1.0 / image_width
                    half_pix_height = 1.0 / image_height
                    min_x_ = 1.0 - half_pix_width
                    max_x_ = -1.0 + half_pix_width
                    min_y_ = 1.0 - half_pix_height
                    max_y_ = -1.0 + half_pix_height
                else:
                    min_x_ = min_x
                    max_x_ = max_x
                    min_y_ = min_y
                    max_y_ = max_y

                # carry out the test over several camera types
                for cam_type in (
                    FoVPerspectiveCameras,
                    FoVOrthographicCameras,
                    OrthographicCameras,
                    PerspectiveCameras,
                ):

                    # init a batch of random cameras
                    cameras = init_random_cameras(
                        cam_type, batch_size, random_z=True
                    ).to(device)

                    # call the raysampler
                    ray_bundle = raysampler(cameras=cameras)

                    # check the shapes of the raysampler outputs
                    self._check_raysampler_output_shapes(
                        raysampler,
                        ray_bundle,
                        batch_size,
                        image_width,
                        image_height,
                        n_pts_per_ray,
                    )

                    # check the points sampled along each ray
                    self._check_raysampler_ray_points(
                        raysampler,
                        cameras,
                        ray_bundle,
                        min_x_,
                        max_x_,
                        min_y_,
                        max_y_,
                        image_width,
                        image_height,
                        min_depth,
                        max_depth,
                    )

                    # check the output direction vectors
                    self._check_raysampler_ray_directions(
                        cameras, raysampler, ray_bundle
                    )

    def _check_grid_shape(self, grid, batch_size, spatial_size, n_pts_per_ray, dim):
        """
        A helper for checking the desired size of a variable output by a raysampler.
        """
        tgt_shape = [
            x for x in [batch_size, *spatial_size, n_pts_per_ray, dim] if x > 0
        ]
        self.assertTrue(all(sz1 == sz2 for sz1, sz2 in zip(grid.shape, tgt_shape)))

    def _check_raysampler_output_shapes(
        self,
        raysampler,
        ray_bundle,
        batch_size,
        image_width,
        image_height,
        n_pts_per_ray,
    ):
        """
        Checks the shapes of raysampler outputs.
        """

        if isinstance(raysampler, GridRaysampler):
            spatial_size = [image_height, image_width]
        elif isinstance(raysampler, MonteCarloRaysampler):
            spatial_size = [image_height * image_width]
        else:
            raise ValueError(str(type(raysampler)))

        self._check_grid_shape(ray_bundle.xys, batch_size, spatial_size, 0, 2)
        self._check_grid_shape(ray_bundle.origins, batch_size, spatial_size, 0, 3)
        self._check_grid_shape(ray_bundle.directions, batch_size, spatial_size, 0, 3)
        self._check_grid_shape(
            ray_bundle.lengths, batch_size, spatial_size, n_pts_per_ray, 0
        )

    def _check_raysampler_ray_points(
        self,
        raysampler,
        cameras,
        ray_bundle,
        min_x,
        max_x,
        min_y,
        max_y,
        image_width,
        image_height,
        min_depth,
        max_depth,
    ):
        """
        Check rays_points_world and rays_zs outputs of raysamplers.
        """

        batch_size = cameras.R.shape[0]

        # convert to ray points
        rays_points_world = ray_bundle_variables_to_ray_points(
            ray_bundle.origins, ray_bundle.directions, ray_bundle.lengths
        )
        n_pts_per_ray = rays_points_world.shape[-2]

        # check that the outputs if ray_bundle_variables_to_ray_points and
        # ray_bundle_to_ray_points match
        rays_points_world_ = ray_bundle_to_ray_points(ray_bundle)
        self.assertClose(rays_points_world, rays_points_world_)

        # check that the depth of each ray point in camera coords
        # matches the expected linearly-spaced depth
        depth_expected = torch.linspace(
            min_depth,
            max_depth,
            n_pts_per_ray,
            dtype=torch.float32,
            device=rays_points_world.device,
        )
        ray_points_camera = (
            cameras.get_world_to_view_transform()
            .transform_points(rays_points_world.view(batch_size, -1, 3))
            .view(batch_size, -1, n_pts_per_ray, 3)
        )
        self.assertClose(
            ray_points_camera[..., 2],
            depth_expected[None, None, :].expand_as(ray_points_camera[..., 2]),
            atol=1e-4,
        )

        # check also that rays_zs is consistent with depth_expected
        self.assertClose(
            ray_bundle.lengths.view(batch_size, -1, n_pts_per_ray),
            depth_expected[None, None, :].expand_as(ray_points_camera[..., 2]),
            atol=1e-6,
        )

        # project the world ray points back to screen space
        ray_points_projected = cameras.transform_points(
            rays_points_world.view(batch_size, -1, 3)
        ).view(rays_points_world.shape)

        # check that ray_xy matches rays_points_projected xy
        rays_xy_projected = ray_points_projected[..., :2].view(
            batch_size, -1, n_pts_per_ray, 2
        )
        self.assertClose(
            ray_bundle.xys.view(batch_size, -1, 1, 2).expand_as(rays_xy_projected),
            rays_xy_projected,
            atol=1e-4,
        )

        # check that projected world points' xy coordinates
        # range correctly between [minx/y, max/y]
        if isinstance(raysampler, GridRaysampler):
            # get the expected coordinates along each grid axis
            ys, xs = [
                torch.linspace(
                    low, high, sz, dtype=torch.float32, device=rays_points_world.device
                )
                for low, high, sz in (
                    (min_y, max_y, image_height),
                    (min_x, max_x, image_width),
                )
            ]
            # compare expected xy with the output xy
            for dim, gt_axis in zip(
                (0, 1), (xs[None, None, :, None], ys[None, :, None, None])
            ):
                self.assertClose(
                    ray_points_projected[..., dim],
                    gt_axis.expand_as(ray_points_projected[..., dim]),
                    atol=1e-4,
                )

        elif isinstance(raysampler, MonteCarloRaysampler):
            # check that the randomly sampled locations
            # are within the allowed bounds for both x and y axes
            for dim, axis_bounds in zip((0, 1), ((min_x, max_x), (min_y, max_y))):
                self.assertTrue(
                    (
                        (ray_points_projected[..., dim] <= axis_bounds[1])
                        & (ray_points_projected[..., dim] >= axis_bounds[0])
                    ).all()
                )

                # also check that x,y along each ray is constant
                if n_pts_per_ray > 1:
                    self.assertClose(
                        ray_points_projected[..., :2].std(dim=-2),
                        torch.zeros_like(ray_points_projected[..., 0, :2]),
                        atol=1e-5,
                    )

        else:
            raise ValueError(str(type(raysampler)))

    def _check_raysampler_ray_directions(self, cameras, raysampler, ray_bundle):
        """
        Check the rays_directions_world output of raysamplers.
        """

        batch_size = cameras.R.shape[0]
        n_pts_per_ray = ray_bundle.lengths.shape[-1]
        spatial_size = ray_bundle.xys.shape[1:-1]
        n_rays_per_image = spatial_size.numel()

        # obtain the ray points in world coords
        rays_points_world = cameras.unproject_points(
            torch.cat(
                (
                    ray_bundle.xys.view(batch_size, n_rays_per_image, 1, 2).expand(
                        batch_size, n_rays_per_image, n_pts_per_ray, 2
                    ),
                    ray_bundle.lengths.view(
                        batch_size, n_rays_per_image, n_pts_per_ray, 1
                    ),
                ),
                dim=-1,
            ).view(batch_size, -1, 3)
        ).view(batch_size, -1, n_pts_per_ray, 3)

        # reshape to common testing size
        rays_directions_world_normed = torch.nn.functional.normalize(
            ray_bundle.directions.view(batch_size, -1, 3), dim=-1
        )

        # check that the l2-normed difference of all consecutive planes
        # of points in world coords matches ray_directions_world
        rays_directions_world_ = torch.nn.functional.normalize(
            rays_points_world[:, :, -1:] - rays_points_world[:, :, :-1], dim=-1
        )
        self.assertClose(
            rays_directions_world_normed[:, :, None].expand_as(rays_directions_world_),
            rays_directions_world_,
            atol=1e-4,
        )

        # check the ray directions rotated using camera rotation matrix
        # match the ray directions of a camera with trivial extrinsics
        cameras_trivial_extrinsic = cameras.clone()
        cameras_trivial_extrinsic.R = eyes(
            N=batch_size, dim=3, dtype=cameras.R.dtype, device=cameras.device
        )
        cameras_trivial_extrinsic.T = torch.zeros_like(cameras.T)

        # make sure we get the same random rays in case we call the
        # MonteCarloRaysampler twice below
        with torch.random.fork_rng(devices=range(torch.cuda.device_count())):
            torch.random.manual_seed(42)
            ray_bundle_world_fix_seed = raysampler(cameras=cameras)
            torch.random.manual_seed(42)
            ray_bundle_camera_fix_seed = raysampler(cameras=cameras_trivial_extrinsic)

        rays_directions_camera_fix_seed_ = Rotate(
            cameras.R, device=cameras.R.device
        ).transform_points(ray_bundle_world_fix_seed.directions.view(batch_size, -1, 3))

        self.assertClose(
            rays_directions_camera_fix_seed_,
            ray_bundle_camera_fix_seed.directions.view(batch_size, -1, 3),
            atol=1e-5,
        )