test_vert_align.py 5.51 KB
Newer Older
facebook-github-bot's avatar
facebook-github-bot committed
1
2
3
4
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.


import unittest
5

facebook-github-bot's avatar
facebook-github-bot committed
6
7
import torch
import torch.nn.functional as F
8
from common_testing import TestCaseMixin
facebook-github-bot's avatar
facebook-github-bot committed
9
10
11
from pytorch3d.ops.vert_align import vert_align
from pytorch3d.structures.meshes import Meshes

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
12
13

class TestVertAlign(TestCaseMixin, unittest.TestCase):
facebook-github-bot's avatar
facebook-github-bot committed
14
15
    @staticmethod
    def vert_align_naive(
16
        feats, verts_or_meshes, return_packed: bool = False, align_corners: bool = True
facebook-github-bot's avatar
facebook-github-bot committed
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
    ):
        """
        Naive implementation of vert_align.
        """
        if torch.is_tensor(feats):
            feats = [feats]
        N = feats[0].shape[0]

        out_feats = []
        # sample every example in the batch separately
        for i in range(N):
            out_i_feats = []
            for feat in feats:
                feats_i = feat[i][None, :, :, :]  # (1, C, H, W)
                if torch.is_tensor(verts_or_meshes):
                    grid = verts_or_meshes[i][None, None, :, :2]  # (1, 1, V, 2)
                elif hasattr(verts_or_meshes, "verts_list"):
                    grid = verts_or_meshes.verts_list()[i][
                        None, None, :, :2
                    ]  # (1, 1, V, 2)
                else:
                    raise ValueError("verts_or_meshes is invalid")
                feat_sampled_i = F.grid_sample(
                    feats_i,
                    grid,
                    mode="bilinear",
                    padding_mode="zeros",
                    align_corners=align_corners,
                )  # (1, C, 1, V)
                feat_sampled_i = feat_sampled_i.squeeze(2).squeeze(0)  # (C, V)
                feat_sampled_i = feat_sampled_i.transpose(1, 0)  # (V, C)
                out_i_feats.append(feat_sampled_i)
            out_i_feats = torch.cat(out_i_feats, 1)  # (V, sum(C))
            out_feats.append(out_i_feats)

        if return_packed:
            out_feats = torch.cat(out_feats, 0)  # (sum(V), sum(C))
        else:
            out_feats = torch.stack(out_feats, 0)  # (N, V, sum(C))
        return out_feats

    @staticmethod
59
    def init_meshes(num_meshes: int = 10, num_verts: int = 1000, num_faces: int = 3000):
facebook-github-bot's avatar
facebook-github-bot committed
60
61
62
63
64
        device = torch.device("cuda:0")
        verts_list = []
        faces_list = []
        for _ in range(num_meshes):
            verts = (
65
                torch.rand((num_verts, 3), dtype=torch.float32, device=device) * 2.0
facebook-github-bot's avatar
facebook-github-bot committed
66
67
68
69
70
71
72
73
74
75
76
77
                - 1.0
            )  # verts in the space of [-1, 1]
            faces = torch.randint(
                num_verts, size=(num_faces, 3), dtype=torch.int64, device=device
            )
            verts_list.append(verts)
            faces_list.append(faces)
        meshes = Meshes(verts_list, faces_list)

        return meshes

    @staticmethod
78
    def init_feats(batch_size: int = 10, num_channels: int = 256, device: str = "cuda"):
facebook-github-bot's avatar
facebook-github-bot committed
79
80
81
        H, W = [14, 28], [14, 28]
        feats = []
        for (h, w) in zip(H, W):
82
            feats.append(torch.rand((batch_size, num_channels, h, w), device=device))
facebook-github-bot's avatar
facebook-github-bot committed
83
84
85
86
87
88
89
90
91
92
93
        return feats

    def test_vert_align_with_meshes(self):
        """
        Test vert align vs naive implementation with meshes.
        """
        meshes = TestVertAlign.init_meshes(10, 1000, 3000)
        feats = TestVertAlign.init_feats(10, 256)

        # feats in list
        out = vert_align(feats, meshes, return_packed=True)
94
        naive_out = TestVertAlign.vert_align_naive(feats, meshes, return_packed=True)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
95
        self.assertClose(out, naive_out)
facebook-github-bot's avatar
facebook-github-bot committed
96
97
98

        # feats as tensor
        out = vert_align(feats[0], meshes, return_packed=True)
99
        naive_out = TestVertAlign.vert_align_naive(feats[0], meshes, return_packed=True)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
100
        self.assertClose(out, naive_out)
facebook-github-bot's avatar
facebook-github-bot committed
101
102
103
104
105
106
107

    def test_vert_align_with_verts(self):
        """
        Test vert align vs naive implementation with verts as tensor.
        """
        feats = TestVertAlign.init_feats(10, 256)
        verts = (
108
            torch.rand((10, 100, 3), dtype=torch.float32, device=feats[0].device) * 2.0
facebook-github-bot's avatar
facebook-github-bot committed
109
110
111
112
113
            - 1.0
        )

        # feats in list
        out = vert_align(feats, verts, return_packed=True)
114
        naive_out = TestVertAlign.vert_align_naive(feats, verts, return_packed=True)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
115
        self.assertClose(out, naive_out)
facebook-github-bot's avatar
facebook-github-bot committed
116
117
118

        # feats as tensor
        out = vert_align(feats[0], verts, return_packed=True)
119
        naive_out = TestVertAlign.vert_align_naive(feats[0], verts, return_packed=True)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
120
        self.assertClose(out, naive_out)
facebook-github-bot's avatar
facebook-github-bot committed
121

122
        out2 = vert_align(feats[0], verts, return_packed=True, align_corners=False)
facebook-github-bot's avatar
facebook-github-bot committed
123
124
125
126
127
128
129
130
131
132
133
134
135
136
        naive_out2 = TestVertAlign.vert_align_naive(
            feats[0], verts, return_packed=True, align_corners=False
        )
        self.assertFalse(torch.allclose(out, out2))
        self.assertTrue(torch.allclose(out2, naive_out2))

    @staticmethod
    def vert_align_with_init(
        num_meshes: int, num_verts: int, num_faces: int, device: str = "cpu"
    ):
        device = torch.device(device)
        verts_list = []
        faces_list = []
        for _ in range(num_meshes):
137
            verts = torch.rand((num_verts, 3), dtype=torch.float32, device=device)
facebook-github-bot's avatar
facebook-github-bot committed
138
139
140
141
142
143
144
145
146
147
148
149
150
151
            faces = torch.randint(
                num_verts, size=(num_faces, 3), dtype=torch.int64, device=device
            )
            verts_list.append(verts)
            faces_list.append(faces)
        meshes = Meshes(verts_list, faces_list)
        feats = TestVertAlign.init_feats(num_meshes, device=device)
        torch.cuda.synchronize()

        def sample_features():
            vert_align(feats, meshes, return_packed=True)
            torch.cuda.synchronize()

        return sample_features