test_subdivide_meshes.py 7.86 KB
Newer Older
facebook-github-bot's avatar
facebook-github-bot committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.


import unittest
import torch

from pytorch3d.ops.subdivide_meshes import SubdivideMeshes
from pytorch3d.structures.meshes import Meshes
from pytorch3d.utils.ico_sphere import ico_sphere


class TestSubdivideMeshes(unittest.TestCase):
    def test_simple_subdivide(self):
        # Create a mesh with one face and check the subdivided mesh has
        # 4 faces with the correct vertex coordinates.
        device = torch.device("cuda:0")
        verts = torch.tensor(
            [[0.5, 1.0, 0.0], [1.0, 0.0, 0.0], [0.0, 0.0, 0.0]],
            dtype=torch.float32,
            device=device,
            requires_grad=True,
        )
        faces = torch.tensor([[0, 1, 2]], dtype=torch.int64, device=device)
        mesh = Meshes(verts=[verts], faces=[faces])
        subdivide = SubdivideMeshes()
        new_mesh = subdivide(mesh)

        # Subdivided face:
        #
        #           v0
        #           /\
        #          /  \
        #         / f0 \
        #     v4 /______\ v3
        #       /\      /\
        #      /  \ f3 /  \
        #     / f2 \  / f1 \
        #    /______\/______\
        #  v2       v5       v1
        #
        gt_subdivide_verts = torch.tensor(
            [
                [0.5, 1.0, 0.0],
                [1.0, 0.0, 0.0],
                [0.0, 0.0, 0.0],
                [0.75, 0.5, 0.0],
                [0.25, 0.5, 0.0],
                [0.5, 0.0, 0.0],
            ],
            dtype=torch.float32,
            device=device,
        )
        gt_subdivide_faces = torch.tensor(
            [[0, 3, 4], [1, 5, 3], [2, 4, 5], [5, 4, 3]],
            dtype=torch.int64,
            device=device,
        )
        new_verts, new_faces = new_mesh.get_mesh_verts_faces(0)
        self.assertTrue(torch.allclose(new_verts, gt_subdivide_verts))
        self.assertTrue(torch.allclose(new_faces, gt_subdivide_faces))
        self.assertTrue(new_verts.requires_grad == verts.requires_grad)

    def test_heterogeneous_meshes(self):
        device = torch.device("cuda:0")
        verts1 = torch.tensor(
            [[0.5, 1.0, 0.0], [1.0, 0.0, 0.0], [0.0, 0.0, 0.0]],
            dtype=torch.float32,
            device=device,
            requires_grad=True,
        )
        faces1 = torch.tensor([[0, 1, 2]], dtype=torch.int64, device=device)
        verts2 = torch.tensor(
            [
                [0.5, 1.0, 0.0],
                [1.0, 0.0, 0.0],
                [0.0, 0.0, 0.0],
                [1.5, 1.0, 0.0],
            ],
            dtype=torch.float32,
            device=device,
            requires_grad=True,
        )
        faces2 = torch.tensor(
            [[0, 1, 2], [0, 3, 1]], dtype=torch.int64, device=device
        )
        faces3 = torch.tensor(
            [[0, 1, 2], [0, 2, 3]], dtype=torch.int64, device=device
        )
        mesh = Meshes(
            verts=[verts1, verts2, verts2], faces=[faces1, faces2, faces3]
        )
        subdivide = SubdivideMeshes()
        new_mesh = subdivide(mesh.clone())

        gt_subdivided_verts1 = torch.tensor(
            [
                [0.5, 1.0, 0.0],
                [1.0, 0.0, 0.0],
                [0.0, 0.0, 0.0],
                [0.75, 0.5, 0.0],
                [0.25, 0.5, 0.0],
                [0.5, 0.0, 0.0],
            ],
            dtype=torch.float32,
            device=device,
        )
        gt_subdivided_faces1 = torch.tensor(
            [[0, 3, 4], [1, 5, 3], [2, 4, 5], [5, 4, 3]],
            dtype=torch.int64,
            device=device,
        )
        # faces2:
        #
        #         v0 _______e2_______ v3
        #           /\              /
        #          /  \            /
        #         /    \          /
        #     e1 /      \ e0     / e4
        #       /        \      /
        #      /          \    /
        #     /            \  /
        #    /______________\/
        #  v2       e3      v1
        #
        # Subdivided faces2:
        #
        #         v0 _______v6_______ v3
        #           /\      /\      /
        #          /  \ f1 /  \ f3 /
        #         / f0 \  / f7 \  /
        #     v5 /______v4______\/v8
        #       /\      /\      /
        #      /  \ f6 /  \ f5 /
        #     / f4 \  / f2 \  /
        #    /______\/______\/
        #  v2       v7       v1
        #
        gt_subdivided_verts2 = torch.tensor(
            [
                [0.5, 1.0, 0.0],
                [1.0, 0.0, 0.0],
                [0.0, 0.0, 0.0],
                [1.5, 1.0, 0.0],
                [0.75, 0.5, 0.0],
                [0.25, 0.5, 0.0],
                [1.0, 1.0, 0.0],
                [0.5, 0.0, 0.0],
                [1.25, 0.5, 0.0],
            ],
            dtype=torch.float32,
            device=device,
        )
        gt_subdivided_faces2 = torch.tensor(
            [
                [0, 4, 5],
                [0, 6, 4],
                [1, 7, 4],
                [3, 8, 6],
                [2, 5, 7],
                [1, 4, 8],
                [7, 5, 4],
                [8, 4, 6],
            ],
            dtype=torch.int64,
            device=device,
        )
        gt_subdivided_verts3 = gt_subdivided_verts2.clone()
        gt_subdivided_verts3[-1, :] = torch.tensor(
            [0.75, 0.5, 0], dtype=torch.float32, device=device
        )
        gt_subdivided_faces3 = torch.tensor(
            [
                [0, 4, 5],
                [0, 5, 6],
                [1, 7, 4],
                [2, 8, 5],
                [2, 5, 7],
                [3, 6, 8],
                [7, 5, 4],
                [8, 6, 5],
            ],
            dtype=torch.int64,
            device=device,
        )
        new_mesh_verts1, new_mesh_faces1 = new_mesh.get_mesh_verts_faces(0)
        new_mesh_verts2, new_mesh_faces2 = new_mesh.get_mesh_verts_faces(1)
        new_mesh_verts3, new_mesh_faces3 = new_mesh.get_mesh_verts_faces(2)
        self.assertTrue(torch.allclose(new_mesh_verts1, gt_subdivided_verts1))
        self.assertTrue(torch.allclose(new_mesh_faces1, gt_subdivided_faces1))
        self.assertTrue(torch.allclose(new_mesh_verts2, gt_subdivided_verts2))
        self.assertTrue(torch.allclose(new_mesh_faces2, gt_subdivided_faces2))
        self.assertTrue(torch.allclose(new_mesh_verts3, gt_subdivided_verts3))
        self.assertTrue(torch.allclose(new_mesh_faces3, gt_subdivided_faces3))
        self.assertTrue(new_mesh_verts1.requires_grad == verts1.requires_grad)
        self.assertTrue(new_mesh_verts2.requires_grad == verts2.requires_grad)
        self.assertTrue(new_mesh_verts3.requires_grad == verts2.requires_grad)

    def test_subdivide_features(self):
        device = torch.device("cuda:0")
        mesh = ico_sphere(0, device)
        N = 10
        mesh = mesh.extend(N)
        edges = mesh.edges_packed()
        V = mesh.num_verts_per_mesh()[0]
        D = 256
        feats = torch.rand(
            (N * V, D), dtype=torch.float32, device=device, requires_grad=True
        )  # packed features
        app_feats = feats[edges].mean(1)
        subdivide = SubdivideMeshes()
        new_mesh, new_feats = subdivide(mesh, feats)
        gt_feats = torch.cat(
            (feats.view(N, V, D), app_feats.view(N, -1, D)), dim=1
        ).view(-1, D)
        self.assertTrue(torch.allclose(new_feats, gt_feats))
        self.assertTrue(new_feats.requires_grad == gt_feats.requires_grad)

    @staticmethod
    def subdivide_meshes_with_init(
        num_meshes: int = 10, same_topo: bool = False
    ):
        device = torch.device("cuda:0")
        meshes = ico_sphere(0, device=device)
        if num_meshes > 1:
            meshes = meshes.extend(num_meshes)
        meshes_init = meshes.clone() if same_topo else None
        torch.cuda.synchronize()

        def subdivide_meshes():
            subdivide = SubdivideMeshes(meshes=meshes_init)
            subdivide(meshes=meshes.clone())
            torch.cuda.synchronize()

        return subdivide_meshes