test_sample_points_from_meshes.py 15.5 KB
Newer Older
facebook-github-bot's avatar
facebook-github-bot committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.


import unittest
from pathlib import Path
import torch

from pytorch3d import _C
from pytorch3d.ops.sample_points_from_meshes import sample_points_from_meshes
from pytorch3d.structures.meshes import Meshes
from pytorch3d.utils.ico_sphere import ico_sphere


class TestSamplePoints(unittest.TestCase):
    def setUp(self) -> None:
        super().setUp()
        torch.manual_seed(1)

    @staticmethod
    def init_meshes(
        num_meshes: int = 10,
        num_verts: int = 1000,
        num_faces: int = 3000,
        device: str = "cpu",
    ):
        device = torch.device(device)
        verts_list = []
        faces_list = []
        for _ in range(num_meshes):
            verts = torch.rand(
                (num_verts, 3), dtype=torch.float32, device=device
            )
            faces = torch.randint(
                num_verts, size=(num_faces, 3), dtype=torch.int64, device=device
            )
            verts_list.append(verts)
            faces_list.append(faces)
        meshes = Meshes(verts_list, faces_list)

        return meshes

    def test_all_empty_meshes(self):
        """
        Check sample_points_from_meshes raises an exception if all meshes are
        invalid.
        """
        device = torch.device("cuda:0")
        verts1 = torch.tensor([], dtype=torch.float32, device=device)
        faces1 = torch.tensor([], dtype=torch.int64, device=device)
        meshes = Meshes(
            verts=[verts1, verts1, verts1], faces=[faces1, faces1, faces1]
        )
        with self.assertRaises(ValueError) as err:
            sample_points_from_meshes(
                meshes, num_samples=100, return_normals=True
            )
        self.assertTrue("Meshes are empty." in str(err.exception))

    def test_sampling_output(self):
        """
        Check outputs of sampling are correct for different meshes.
        For an ico_sphere, the sampled vertices should lie on a unit sphere.
        For an empty mesh, the samples and normals should be 0.
        """
        device = torch.device("cuda:0")

        # Unit simplex.
        verts_pyramid = torch.tensor(
            [
                [0.0, 0.0, 0.0],
                [1.0, 0.0, 0.0],
                [0.0, 1.0, 0.0],
                [0.0, 0.0, 1.0],
            ],
            dtype=torch.float32,
            device=device,
        )
        faces_pyramid = torch.tensor(
            [[0, 1, 2], [0, 2, 3], [0, 1, 3], [1, 2, 3]],
            dtype=torch.int64,
            device=device,
        )
        sphere_mesh = ico_sphere(9, device)
        verts_sphere, faces_sphere = sphere_mesh.get_mesh_verts_faces(0)
        verts_empty = torch.tensor([], dtype=torch.float32, device=device)
        faces_empty = torch.tensor([], dtype=torch.int64, device=device)
        num_samples = 10
        meshes = Meshes(
            verts=[verts_empty, verts_sphere, verts_pyramid],
            faces=[faces_empty, faces_sphere, faces_pyramid],
        )
        samples, normals = sample_points_from_meshes(
            meshes, num_samples=num_samples, return_normals=True
        )
        samples = samples.cpu()
        normals = normals.cpu()

        self.assertEqual(samples.shape, (3, num_samples, 3))
        self.assertEqual(normals.shape, (3, num_samples, 3))

        # Empty meshes: should have all zeros for samples and normals.
        self.assertTrue(
            torch.allclose(samples[0, :], torch.zeros((1, num_samples, 3)))
        )
        self.assertTrue(
            torch.allclose(normals[0, :], torch.zeros((1, num_samples, 3)))
        )

        # Sphere: points should have radius 1.
        x, y, z = samples[1, :].unbind(1)
        radius = torch.sqrt(x ** 2 + y ** 2 + z ** 2)

        self.assertTrue(torch.allclose(radius, torch.ones((num_samples))))

        # Pyramid: points shoudl lie on one of the faces.
        pyramid_verts = samples[2, :]
        pyramid_normals = normals[2, :]

        self.assertTrue(
            torch.allclose(
                pyramid_verts.lt(1).float(), torch.ones_like(pyramid_verts)
            )
        )
        self.assertTrue(
            torch.allclose(
                (pyramid_verts >= 0).float(), torch.ones_like(pyramid_verts)
            )
        )

        # Face 1: z = 0,  x + y <= 1, normals = (0, 0, 1).
        face_1_idxs = pyramid_verts[:, 2] == 0
        face_1_verts, face_1_normals = (
            pyramid_verts[face_1_idxs, :],
            pyramid_normals[face_1_idxs, :],
        )
        self.assertTrue(
            torch.all((face_1_verts[:, 0] + face_1_verts[:, 1]) <= 1)
        )
        self.assertTrue(
            torch.allclose(
                face_1_normals,
                torch.tensor([0, 0, 1], dtype=torch.float32).expand(
                    face_1_normals.size()
                ),
            )
        )

        # Face 2: x = 0,  z + y <= 1, normals = (1, 0, 0).
        face_2_idxs = pyramid_verts[:, 0] == 0
        face_2_verts, face_2_normals = (
            pyramid_verts[face_2_idxs, :],
            pyramid_normals[face_2_idxs, :],
        )
        self.assertTrue(
            torch.all((face_2_verts[:, 1] + face_2_verts[:, 2]) <= 1)
        )
        self.assertTrue(
            torch.allclose(
                face_2_normals,
                torch.tensor([1, 0, 0], dtype=torch.float32).expand(
                    face_2_normals.size()
                ),
            )
        )

        # Face 3: y = 0, x + z <= 1, normals = (0, -1, 0).
        face_3_idxs = pyramid_verts[:, 1] == 0
        face_3_verts, face_3_normals = (
            pyramid_verts[face_3_idxs, :],
            pyramid_normals[face_3_idxs, :],
        )
        self.assertTrue(
            torch.all((face_3_verts[:, 0] + face_3_verts[:, 2]) <= 1)
        )
        self.assertTrue(
            torch.allclose(
                face_3_normals,
                torch.tensor([0, -1, 0], dtype=torch.float32).expand(
                    face_3_normals.size()
                ),
            )
        )

        # Face 4: x + y + z = 1, normals = (1, 1, 1)/sqrt(3).
        face_4_idxs = pyramid_verts.gt(0).all(1)
        face_4_verts, face_4_normals = (
            pyramid_verts[face_4_idxs, :],
            pyramid_normals[face_4_idxs, :],
        )
        self.assertTrue(
            torch.allclose(
                face_4_verts.sum(1), torch.ones(face_4_verts.size(0))
            )
        )
        self.assertTrue(
            torch.allclose(
                face_4_normals,
                (
                    torch.tensor([1, 1, 1], dtype=torch.float32)
                    / torch.sqrt(torch.tensor(3, dtype=torch.float32))
                ).expand(face_4_normals.size()),
            )
        )

    def test_mutinomial(self):
        """
        Confirm that torch.multinomial does not sample elements which have
        zero probability.
        """
        freqs = torch.cuda.FloatTensor(
            [
                0.0,
                0.0,
                0.0,
                0.0,
                0.0,
                0.0,
                0.0,
                0.0,
                0.0,
                0.03178183361887932,
                0.027680952101945877,
                0.033176131546497345,
                0.046052902936935425,
                0.07742464542388916,
                0.11543981730937958,
                0.14148041605949402,
                0.15784293413162231,
                0.13180233538150787,
                0.08271478116512299,
                0.049702685326337814,
                0.027557924389839172,
                0.018125897273421288,
                0.011851548217236996,
                0.010252203792333603,
                0.007422595750540495,
                0.005372154992073774,
                0.0045109698548913,
                0.0036087757907807827,
                0.0035267581697553396,
                0.0018864056328311563,
                0.0024605290964245796,
                0.0022964938543736935,
                0.0018453967059031129,
                0.0010662291897460818,
                0.0009842115687206388,
                0.00045109697384759784,
                0.0007791675161570311,
                0.00020504408166743815,
                0.00020504408166743815,
                0.00020504408166743815,
                0.00012302644609007984,
                0.0,
                0.00012302644609007984,
                4.100881778867915e-05,
                0.0,
                0.0,
                0.0,
                0.0,
                0.0,
                0.0,
            ]
        )

        sample = []
        for _ in range(1000):
            torch.cuda.get_rng_state()
            sample = torch.multinomial(freqs, 1000, True)
            if freqs[sample].min() == 0:
                sample_idx = (freqs[sample] == 0).nonzero()[0][0]
                sampled = sample[sample_idx]
                print(
                    "%s th element of last sample was %s, which has probability %s"
                    % (sample_idx, sampled, freqs[sampled])
                )
                return False
        return True

    def test_multinomial_weights(self):
        """
        Confirm that torch.multinomial does not sample elements which have
        zero probability using a real example of input from a training run.
        """
        weights = torch.load(Path(__file__).resolve().parent / "weights.pt")
        S = 4096
        num_trials = 100
        for _ in range(0, num_trials):
            weights[weights < 0] = 0.0
            samples = weights.multinomial(S, replacement=True)
            sampled_weights = weights[samples]
            assert sampled_weights.min() > 0
            if sampled_weights.min() <= 0:
                return False
        return True

    @staticmethod
    def face_areas(verts, faces):
        """
        Vectorized PyTorch implementation of triangle face area function.
        """
        verts_faces = verts[faces]
        v0x = verts_faces[:, 0::3, 0]
        v0y = verts_faces[:, 0::3, 1]
        v0z = verts_faces[:, 0::3, 2]

        v1x = verts_faces[:, 1::3, 0]
        v1y = verts_faces[:, 1::3, 1]
        v1z = verts_faces[:, 1::3, 2]

        v2x = verts_faces[:, 2::3, 0]
        v2y = verts_faces[:, 2::3, 1]
        v2z = verts_faces[:, 2::3, 2]

        ax = v0x - v2x
        ay = v0y - v2y
        az = v0z - v2z

        bx = v1x - v2x
        by = v1y - v2y
        bz = v1z - v2z

        cx = ay * bz - az * by
        cy = az * bx - ax * bz
        cz = ax * by - ay * bx

        # this gives the area of the parallelogram with sides a and b
        area_sqr = cx * cx + cy * cy + cz * cz
        # the area of the triangle is half
        return torch.sqrt(area_sqr) / 2.0

    def test_face_areas(self):
        """
        Check the results from face_areas cuda and PyTorch implementions are
        the same. Check that face_areas throws an error if cpu tensors are
        given as input.
        """
        meshes = self.init_meshes(10, 1000, 3000, device="cuda:0")
        verts = meshes.verts_packed()
        faces = meshes.faces_packed()

        areas_torch = self.face_areas(verts, faces).squeeze()
        areas_cuda, _ = _C.face_areas_normals(verts, faces)
        self.assertTrue(torch.allclose(areas_torch, areas_cuda, atol=5e-8))
        with self.assertRaises(Exception) as err:
            _C.face_areas_normals(verts.cpu(), faces.cpu())
        self.assertTrue("Not implemented on the CPU" in str(err.exception))

    @staticmethod
    def packed_to_padded_tensor(inputs, first_idxs, max_size):
        """
        PyTorch implementation of cuda packed_to_padded_tensor function.
        """
        num_meshes = first_idxs.size(0)
        inputs_padded = torch.zeros((num_meshes, max_size))
        for m in range(num_meshes):
            s = first_idxs[m]
            if m == num_meshes - 1:
                f = inputs.size(0)
            else:
                f = first_idxs[m + 1]
            inputs_padded[m, :f] = inputs[s:f]

        return inputs_padded

    def test_packed_to_padded_tensor(self):
        """
        Check the results from packed_to_padded cuda and PyTorch implementions
        are the same.
        """
        meshes = self.init_meshes(1, 3, 5, device="cuda:0")
        verts = meshes.verts_packed()
        faces = meshes.faces_packed()
        mesh_to_faces_packed_first_idx = meshes.mesh_to_faces_packed_first_idx()
        max_faces = meshes.num_faces_per_mesh().max().item()

        areas, _ = _C.face_areas_normals(verts, faces)
        areas_padded = _C.packed_to_padded_tensor(
            areas, mesh_to_faces_packed_first_idx, max_faces
        ).cpu()
        areas_padded_cpu = TestSamplePoints.packed_to_padded_tensor(
            areas, mesh_to_faces_packed_first_idx, max_faces
        )
        self.assertTrue(torch.allclose(areas_padded, areas_padded_cpu))
        with self.assertRaises(Exception) as err:
            _C.packed_to_padded_tensor(
                areas.cpu(), mesh_to_faces_packed_first_idx, max_faces
            )
        self.assertTrue("Not implemented on the CPU" in str(err.exception))

    @staticmethod
    def sample_points_with_init(
        num_meshes: int,
        num_verts: int,
        num_faces: int,
        num_samples: int,
        device: str = "cpu",
    ):
        device = torch.device(device)
        verts_list = []
        faces_list = []
        for _ in range(num_meshes):
            verts = torch.rand(
                (num_verts, 3), dtype=torch.float32, device=device
            )
            faces = torch.randint(
                num_verts, size=(num_faces, 3), dtype=torch.int64, device=device
            )
            verts_list.append(verts)
            faces_list.append(faces)
        meshes = Meshes(verts_list, faces_list)
        torch.cuda.synchronize()

        def sample_points():
            sample_points_from_meshes(
                meshes, num_samples=num_samples, return_normals=True
            )
            torch.cuda.synchronize()

        return sample_points

    @staticmethod
    def face_areas_with_init(
        num_meshes: int, num_verts: int, num_faces: int, cuda: str = True
    ):
        device = "cuda" if cuda else "cpu"
        meshes = TestSamplePoints.init_meshes(
            num_meshes, num_verts, num_faces, device
        )
        verts = meshes.verts_packed()
        faces = meshes.faces_packed()
        torch.cuda.synchronize()

        def face_areas():
            if cuda:
                _C.face_areas_normals(verts, faces)
            else:
                TestSamplePoints.face_areas(verts, faces)
            torch.cuda.synchronize()

        return face_areas

    @staticmethod
    def packed_to_padded_with_init(
        num_meshes: int, num_verts: int, num_faces: int, cuda: str = True
    ):
        device = "cuda" if cuda else "cpu"
        meshes = TestSamplePoints.init_meshes(
            num_meshes, num_verts, num_faces, device
        )
        verts = meshes.verts_packed()
        faces = meshes.faces_packed()
        mesh_to_faces_packed_first_idx = meshes.mesh_to_faces_packed_first_idx()
        max_faces = meshes.num_faces_per_mesh().max().item()

        if cuda:
            areas, _ = _C.face_areas_normals(verts, faces)
        else:
            areas = TestSamplePoints.face_areas(verts, faces)
        torch.cuda.synchronize()

        def packed_to_padded():
            if cuda:
                _C.packed_to_padded_tensor(
                    areas, mesh_to_faces_packed_first_idx, max_faces
                )
            else:
                TestSamplePoints.packed_to_padded_tensor(
                    areas, mesh_to_faces_packed_first_idx, max_faces
                )
            torch.cuda.synchronize()

        return packed_to_padded