test_blending.py 8.56 KB
Newer Older
facebook-github-bot's avatar
facebook-github-bot committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.

import numpy as np
import unittest
import torch

from pytorch3d.renderer.blending import (
    BlendParams,
    hard_rgb_blend,
    sigmoid_alpha_blend,
    softmax_rgb_blend,
)
from pytorch3d.renderer.mesh.rasterizer import Fragments


def sigmoid_blend_naive(colors, fragments, blend_params):
    """
    Naive for loop based implementation of distance based alpha calculation.
    Only for test purposes.
    """
    pix_to_face = fragments.pix_to_face
    dists = fragments.dists
    sigma = blend_params.sigma

    N, H, W, K = pix_to_face.shape
    device = pix_to_face.device
    pixel_colors = torch.ones((N, H, W, 4), dtype=colors.dtype, device=device)

    for n in range(N):
        for h in range(H):
            for w in range(W):
                alpha = 1.0

                # Loop over k faces and calculate 2D distance based probability
                # map.
                for k in range(K):
                    if pix_to_face[n, h, w, k] >= 0:
                        prob = torch.sigmoid(-dists[n, h, w, k] / sigma)
                        alpha *= 1.0 - prob  # cumulative product
                pixel_colors[n, h, w, :3] = colors[n, h, w, 0, :]
                pixel_colors[n, h, w, 3] = 1.0 - alpha

    pixel_colors = torch.clamp(pixel_colors, min=0, max=1.0)
    return torch.flip(pixel_colors, [1])


def softmax_blend_naive(colors, fragments, blend_params):
    """
    Naive for loop based implementation of softmax blending.
    Only for test purposes.
    """
    pix_to_face = fragments.pix_to_face
    dists = fragments.dists
    zbuf = fragments.zbuf
    sigma = blend_params.sigma
    gamma = blend_params.gamma

    N, H, W, K = pix_to_face.shape
    device = pix_to_face.device
    pixel_colors = torch.ones((N, H, W, 4), dtype=colors.dtype, device=device)

    # Near and far clipping planes
    zfar = 100.0
    znear = 1.0

    bk_color = blend_params.background_color
    if not torch.is_tensor(bk_color):
        bk_color = torch.tensor(bk_color, dtype=colors.dtype, device=device)

    # Background color component
    delta = np.exp(1e-10 / gamma) * 1e-10
    delta = torch.tensor(delta).to(device=device)

    for n in range(N):
        for h in range(H):
            for w in range(W):
                alpha = 1.0
                weights_k = torch.zeros(K)
                zmax = 0.0

                # Loop over K to find max z.
                for k in range(K):
                    if pix_to_face[n, h, w, k] >= 0:
                        zinv = (zfar - zbuf[n, h, w, k]) / (zfar - znear)
                        if zinv > zmax:
                            zmax = zinv

                # Loop over K faces to calculate 2D distance based probability
                # map and zbuf based weights for colors.
                for k in range(K):
                    if pix_to_face[n, h, w, k] >= 0:
                        zinv = (zfar - zbuf[n, h, w, k]) / (zfar - znear)
                        prob = torch.sigmoid(-dists[n, h, w, k] / sigma)
                        alpha *= 1.0 - prob  # cumulative product
                        weights_k[k] = prob * torch.exp((zinv - zmax) / gamma)

                denom = weights_k.sum() + delta
                weights = weights_k / denom
                cols = (weights[..., None] * colors[n, h, w, :, :]).sum(dim=0)
                pixel_colors[n, h, w, :3] = cols
                pixel_colors[n, h, w, :3] += (delta / denom) * bk_color
                pixel_colors[n, h, w, 3] = 1.0 - alpha

    pixel_colors = torch.clamp(pixel_colors, min=0, max=1.0)
    return torch.flip(pixel_colors, [1])


class TestBlending(unittest.TestCase):
    def setUp(self) -> None:
        torch.manual_seed(42)

    def test_hard_rgb_blend(self):
        N, H, W, K = 5, 10, 10, 20
        pix_to_face = torch.ones((N, H, W, K))
        bary_coords = torch.ones((N, H, W, K, 3))
        fragments = Fragments(
            pix_to_face=pix_to_face,
            bary_coords=bary_coords,
            zbuf=pix_to_face,  # dummy
            dists=pix_to_face,  # dummy
        )
        colors = bary_coords.clone()
        top_k = torch.randn((K, 3))
        colors[..., :, :] = top_k
        images = hard_rgb_blend(colors, fragments)
        expected_vals = torch.ones((N, H, W, 4))
        pix_cols = torch.ones_like(expected_vals[..., :3]) * top_k[0, :]
        expected_vals[..., :3] = pix_cols
        self.assertTrue(torch.allclose(images, expected_vals))

    def test_sigmoid_alpha_blend(self):
        """
        Test outputs of sigmoid alpha blend tensorised function match those of
        the naive iterative version. Also check gradients match.
        """

        # Create dummy outputs of rasterization simulating a cube in the centre
        # of the image with surrounding padded values.
        N, S, K = 1, 8, 2
        pix_to_face = -torch.ones((N, S, S, K), dtype=torch.int64)
        h = int(S / 2)
        pix_to_face_full = torch.randint(size=(N, h, h, K), low=0, high=100)
        s = int(S / 4)
        e = int(0.75 * S)
        pix_to_face[:, s:e, s:e, :] = pix_to_face_full
        bary_coords = torch.ones((N, S, S, K, 3))

        # randomly flip the sign of the distance
        # (-) means inside triangle, (+) means outside triangle.
        random_sign_flip = torch.rand((N, S, S, K))
        random_sign_flip[random_sign_flip > 0.5] *= -1.0
        dists = torch.randn(size=(N, S, S, K))
        dists1 = dists * random_sign_flip
        dists2 = dists1.clone()
        dists1.requires_grad = True
        dists2.requires_grad = True
        colors = torch.randn_like(bary_coords)
        fragments1 = Fragments(
            pix_to_face=pix_to_face,
            bary_coords=bary_coords,  # dummy
            zbuf=pix_to_face,  # dummy
            dists=dists1,
        )
        fragments2 = Fragments(
            pix_to_face=pix_to_face,
            bary_coords=bary_coords,  # dummy
            zbuf=pix_to_face,  # dummy
            dists=dists2,
        )
        blend_params = BlendParams(sigma=2e-1)
        images = sigmoid_alpha_blend(colors, fragments1, blend_params)
        images_naive = sigmoid_blend_naive(colors, fragments2, blend_params)
        self.assertTrue(torch.allclose(images, images_naive))

        torch.manual_seed(231)
        images.sum().backward()
        self.assertTrue(hasattr(dists1, "grad"))
        images_naive.sum().backward()
        self.assertTrue(hasattr(dists2, "grad"))

        self.assertTrue(torch.allclose(dists1.grad, dists2.grad, rtol=1e-5))

    def test_softmax_rgb_blend(self):
        # Create dummy outputs of rasterization simulating a cube in the centre
        # of the image with surrounding padded values.
        N, S, K = 1, 8, 2
        pix_to_face = -torch.ones((N, S, S, K), dtype=torch.int64)
        h = int(S / 2)
        pix_to_face_full = torch.randint(size=(N, h, h, K), low=0, high=100)
        s = int(S / 4)
        e = int(0.75 * S)
        pix_to_face[:, s:e, s:e, :] = pix_to_face_full
        bary_coords = torch.ones((N, S, S, K, 3))

        random_sign_flip = torch.rand((N, S, S, K))
        random_sign_flip[random_sign_flip > 0.5] *= -1.0
        zbuf1 = torch.randn(size=(N, S, S, K))

        # randomly flip the sign of the distance
        # (-) means inside triangle, (+) means outside triangle.
        dists1 = torch.randn(size=(N, S, S, K)) * random_sign_flip
        dists2 = dists1.clone()
        zbuf2 = zbuf1.clone()
        dists1.requires_grad = True
        dists2.requires_grad = True
        zbuf1.requires_grad = True
        zbuf2.requires_grad = True
        colors = torch.randn_like(bary_coords)
        fragments1 = Fragments(
            pix_to_face=pix_to_face,
            bary_coords=bary_coords,  # dummy
            zbuf=zbuf1,
            dists=dists1,
        )
        fragments2 = Fragments(
            pix_to_face=pix_to_face,
            bary_coords=bary_coords,  # dummy
            zbuf=zbuf2,
            dists=dists2,
        )
        blend_params = BlendParams(sigma=1e-1)
        images = softmax_rgb_blend(colors, fragments1, blend_params)
        images_naive = softmax_blend_naive(colors, fragments2, blend_params)
        self.assertTrue(torch.allclose(images, images_naive))

        # Check gradients.
        images.sum().backward()
        self.assertTrue(hasattr(dists1, "grad"))
        self.assertTrue(hasattr(zbuf1, "grad"))
        images_naive.sum().backward()
        self.assertTrue(hasattr(dists2, "grad"))
        self.assertTrue(hasattr(zbuf2, "grad"))

        self.assertTrue(torch.allclose(dists1.grad, dists2.grad, atol=2e-5))
        self.assertTrue(torch.allclose(zbuf1.grad, zbuf2.grad, atol=2e-5))