implicitron_volumes.ipynb 33.2 KB
Newer Older
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1
2
3
4
{
  "cells": [
    {
      "cell_type": "code",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
5
      "execution_count": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
6
7
      "metadata": {
        "collapsed": false,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
8
        "customInput": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
9
10
        "customOutput": null,
        "executionStartTime": 1659619824914,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
11
12
13
14
        "executionStopTime": 1659619825485,
        "originalKey": "d38652e8-200a-413c-a36a-f4d349b78a9d",
        "requestMsgId": "641de8aa-0e42-4446-9304-c160a2d226bf",
        "showInput": true
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
15
      },
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
16
      "outputs": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
17
18
      "source": [
        "# Copyright (c) Meta Platforms, Inc. and affiliates. All rights reserved."
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
19
      ]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
20
21
    },
    {
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
22
      "attachments": {},
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
23
24
      "cell_type": "markdown",
      "metadata": {
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
25
        "customInput": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
26
        "originalKey": "a48a9dcf-e80f-474b-a0c4-2c9a765b15c5",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
27
        "showInput": false
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
28
29
30
31
32
33
34
      },
      "source": [
        "# A simple model using Implicitron\n",
        "\n",
        "In this demo, we use the VolumeRenderer from PyTorch3D as a custom implicit function in Implicitron. We will see\n",
        "* some of the main objects in Implicitron\n",
        "* how to plug in a custom part of a model"
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
35
      ]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
36
37
    },
    {
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
38
      "attachments": {},
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
39
40
      "cell_type": "markdown",
      "metadata": {
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
41
        "customInput": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
42
        "originalKey": "51337c0e-ad27-4b75-ad6a-737dca5d7b95",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
43
        "showInput": false
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
44
45
46
47
      },
      "source": [
        "## 0. Install and import modules\n",
        "\n",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
48
49
        "Ensure `torch` and `torchvision` are installed. If `pytorch3d` is not installed, install it using the following cell:\n"
      ]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
50
51
52
    },
    {
      "cell_type": "code",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
53
      "execution_count": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
54
55
      "metadata": {
        "collapsed": false,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
56
        "customInput": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
57
58
        "customOutput": null,
        "executionStartTime": 1659619898147,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
59
60
61
62
        "executionStopTime": 1659619898274,
        "originalKey": "76f1ecd4-6b73-4214-81b0-118ef8d86872",
        "requestMsgId": "deb6a860-6923-4227-abef-d31388b5142d",
        "showInput": true
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
63
      },
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
64
      "outputs": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
      "source": [
        "import os\n",
        "import sys\n",
        "import torch\n",
        "need_pytorch3d=False\n",
        "try:\n",
        "    import pytorch3d\n",
        "except ModuleNotFoundError:\n",
        "    need_pytorch3d=True\n",
        "if need_pytorch3d:\n",
        "    if torch.__version__.startswith(\"1.12.\") and sys.platform.startswith(\"linux\"):\n",
        "        # We try to install PyTorch3D via a released wheel.\n",
        "        pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
        "        version_str=\"\".join([\n",
        "            f\"py3{sys.version_info.minor}_cu\",\n",
        "            torch.version.cuda.replace(\".\",\"\"),\n",
        "            f\"_pyt{pyt_version_str}\"\n",
        "        ])\n",
        "        !pip install fvcore iopath\n",
        "        !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html\n",
        "    else:\n",
        "        # We try to install PyTorch3D from source.\n",
        "        !curl -LO https://github.com/NVIDIA/cub/archive/1.10.0.tar.gz\n",
        "        !tar xzf 1.10.0.tar.gz\n",
        "        os.environ[\"CUB_HOME\"] = os.getcwd() + \"/cub-1.10.0\"\n",
        "        !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
91
      ]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
92
93
    },
    {
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
94
      "attachments": {},
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
95
96
      "cell_type": "markdown",
      "metadata": {
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
97
        "customInput": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
98
        "originalKey": "2c1020e6-eb4a-4644-9719-9147500d8e4f",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
99
        "showInput": false
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
100
101
      },
      "source": [
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
102
103
        "Ensure omegaconf and visdom are installed. If not, run this cell. (It should not be necessary to restart the runtime.)"
      ]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
104
105
106
    },
    {
      "cell_type": "code",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
107
      "execution_count": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
108
109
      "metadata": {
        "customInput": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
110
111
112
        "customOutput": null,
        "originalKey": "9e751931-a38d-44c9-9ff1-ac2f7d3a3f99",
        "showInput": true
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
113
      },
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
114
      "outputs": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
115
      "source": [
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
116
117
        "!pip install omegaconf visdom"
      ]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
118
119
120
    },
    {
      "cell_type": "code",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
121
      "execution_count": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
122
      "metadata": {
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
123
        "code_folding": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
124
125
126
127
        "collapsed": false,
        "customOutput": null,
        "executionStartTime": 1659612480556,
        "executionStopTime": 1659612480644,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
128
129
130
        "hidden_ranges": [],
        "originalKey": "86807e4a-1675-4520-a033-c7af85b233ec",
        "requestMsgId": "880a7e20-4a90-4b37-a5eb-bccc0b23cac6"
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
131
      },
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
132
      "outputs": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
      "source": [
        "import logging\n",
        "from typing import Tuple\n",
        "\n",
        "import matplotlib.animation as animation\n",
        "import matplotlib.pyplot as plt\n",
        "import numpy as np\n",
        "import torch\n",
        "import tqdm\n",
        "from IPython.display import HTML\n",
        "from omegaconf import OmegaConf\n",
        "from PIL import Image\n",
        "from pytorch3d.implicitron.dataset.dataset_base import FrameData\n",
        "from pytorch3d.implicitron.dataset.rendered_mesh_dataset_map_provider import RenderedMeshDatasetMapProvider\n",
        "from pytorch3d.implicitron.models.generic_model import GenericModel\n",
        "from pytorch3d.implicitron.models.implicit_function.base import ImplicitFunctionBase\n",
        "from pytorch3d.implicitron.models.renderer.base import EvaluationMode\n",
150
        "from pytorch3d.implicitron.tools.config import get_default_args, registry, remove_unused_components\n",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
151
152
153
154
        "from pytorch3d.renderer import RayBundle\n",
        "from pytorch3d.renderer.implicit.renderer import VolumeSampler\n",
        "from pytorch3d.structures import Volumes\n",
        "from pytorch3d.vis.plotly_vis import plot_batch_individually, plot_scene"
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
155
      ]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
156
157
158
    },
    {
      "cell_type": "code",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
159
      "execution_count": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
160
      "metadata": {
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
161
        "code_folding": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
162
        "collapsed": false,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
163
        "customInput": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
164
165
166
        "customOutput": null,
        "executionStartTime": 1659610929375,
        "executionStopTime": 1659610929383,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
167
168
169
170
        "hidden_ranges": [],
        "originalKey": "b2d9f5bd-a9d4-4f78-b21e-92f2658e0fe9",
        "requestMsgId": "7e43e623-4030-438b-af4e-b96170c9a052",
        "showInput": true
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
171
      },
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
172
      "outputs": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
173
174
      "source": [
        "output_resolution = 80"
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
175
      ]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
176
177
178
    },
    {
      "cell_type": "code",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
179
      "execution_count": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
180
      "metadata": {
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
181
        "code_folding": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
182
        "collapsed": false,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
183
        "customInput": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
184
185
186
        "customOutput": null,
        "executionStartTime": 1659610930042,
        "executionStopTime": 1659610930050,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
187
188
189
190
        "hidden_ranges": [],
        "originalKey": "0b0c2087-4c86-4c57-b0ee-6f48a70a9c78",
        "requestMsgId": "46883aad-f00b-4fd4-ac17-eec0b2ac272a",
        "showInput": true
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
191
      },
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
192
      "outputs": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
193
194
      "source": [
        "torch.set_printoptions(sci_mode=False)"
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
195
      ]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
196
197
    },
    {
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
198
      "attachments": {},
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
199
200
      "cell_type": "markdown",
      "metadata": {
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
201
        "customInput": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
202
        "originalKey": "37809d0d-b02e-42df-85b6-cdd038373653",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
203
        "showInput": false
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
204
205
206
207
208
209
210
      },
      "source": [
        "## 1. Load renders of a mesh (the cow mesh) as a dataset\n",
        "\n",
        "A dataset's train, val and test parts in Implicitron are represented as a `dataset_map`, and provided by an implementation of `DatasetMapProvider`. \n",
        "`RenderedMeshDatasetMapProvider` is one which generates a single-scene dataset with only a train component by taking a mesh and rendering it.\n",
        "We use it with the cow mesh."
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
211
      ]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
212
213
    },
    {
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
214
      "attachments": {},
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
215
216
217
      "cell_type": "markdown",
      "metadata": {
        "collapsed": false,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
218
        "customInput": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
219
220
        "customOutput": null,
        "executionStartTime": 1659620739780,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
221
222
223
224
        "executionStopTime": 1659620739914,
        "originalKey": "cc68cb9c-b8bf-4e9e-bef1-2cfafdf6caa2",
        "requestMsgId": "398cfcae-5d43-4b6f-9c75-db3d297364d4",
        "showInput": false
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
225
226
227
228
      },
      "source": [
        "If running this notebook using **Google Colab**, run the following cell to fetch the mesh obj and texture files and save it at the path data/cow_mesh.\n",
        "If running locally, the data is already available at the correct path."
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
229
      ]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
230
231
232
    },
    {
      "cell_type": "code",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
233
      "execution_count": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
234
235
      "metadata": {
        "customInput": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
236
237
238
        "customOutput": null,
        "originalKey": "2c55e002-a885-4169-8fdc-af9078b05968",
        "showInput": true
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
239
      },
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
240
      "outputs": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
241
242
243
244
245
      "source": [
        "!mkdir -p data/cow_mesh\n",
        "!wget -P data/cow_mesh https://dl.fbaipublicfiles.com/pytorch3d/data/cow_mesh/cow.obj\n",
        "!wget -P data/cow_mesh https://dl.fbaipublicfiles.com/pytorch3d/data/cow_mesh/cow.mtl\n",
        "!wget -P data/cow_mesh https://dl.fbaipublicfiles.com/pytorch3d/data/cow_mesh/cow_texture.png"
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
246
      ]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
247
248
249
    },
    {
      "cell_type": "code",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
250
      "execution_count": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
251
      "metadata": {
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
252
        "code_folding": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
253
254
255
256
        "collapsed": false,
        "customOutput": null,
        "executionStartTime": 1659621652237,
        "executionStopTime": 1659621652903,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
257
258
259
260
        "hidden_ranges": [],
        "originalKey": "eb77aaec-048c-40bd-bd69-0e66b6ab60b1",
        "requestMsgId": "09b9975c-ff86-41c9-b4a9-975d23afc562",
        "showInput": true
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
261
      },
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
262
      "outputs": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
263
264
265
266
267
268
      "source": [
        "cow_provider = RenderedMeshDatasetMapProvider(\n",
        "    data_file=\"data/cow_mesh/cow.obj\",\n",
        "    use_point_light=False,\n",
        "    resolution=output_resolution,\n",
        ")"
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
269
      ]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
270
271
272
    },
    {
      "cell_type": "code",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
273
      "execution_count": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
274
      "metadata": {
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
275
        "code_folding": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
276
        "collapsed": false,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
277
        "customInput": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
278
279
280
        "customOutput": null,
        "executionStartTime": 1659610966145,
        "executionStopTime": 1659610966255,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
281
282
283
284
        "hidden_ranges": [],
        "originalKey": "8210e15b-da48-4306-a49a-41c4e7e7d42f",
        "requestMsgId": "c243edd2-a106-4fba-8471-dfa4f99a2088",
        "showInput": true
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
285
      },
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
286
      "outputs": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
287
288
289
      "source": [
        "dataset_map = cow_provider.get_dataset_map()\n",
        "tr_cameras = [training_frame.camera for training_frame in dataset_map.train]"
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
290
      ]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
291
292
293
    },
    {
      "cell_type": "code",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
294
      "execution_count": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
295
      "metadata": {
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
296
        "code_folding": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
297
        "collapsed": false,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
298
        "customInput": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
299
300
301
        "customOutput": null,
        "executionStartTime": 1659610967703,
        "executionStopTime": 1659610967848,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
302
303
304
305
        "hidden_ranges": [],
        "originalKey": "458d72ad-d9a7-4f13-b5b7-90d2aec61c16",
        "requestMsgId": "7f9431f3-8717-4d89-a7fe-1420dd0e00c4",
        "showInput": true
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
306
      },
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
307
      "outputs": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
308
309
310
311
312
      "source": [
        "# The cameras are all in the XZ plane, in a circle about 2.7 from the origin\n",
        "centers = torch.cat([i.get_camera_center() for i in tr_cameras])\n",
        "print(centers.min(0).values)\n",
        "print(centers.max(0).values)"
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
313
      ]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
314
315
316
    },
    {
      "cell_type": "code",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
317
      "execution_count": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
318
      "metadata": {
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
319
        "code_folding": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
320
        "collapsed": false,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
321
        "customInput": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
322
323
324
        "customOutput": null,
        "executionStartTime": 1659552920194,
        "executionStopTime": 1659552923122,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
325
326
327
328
        "hidden_ranges": [],
        "originalKey": "931e712b-b141-437a-97fb-dc2a07ce3458",
        "requestMsgId": "931e712b-b141-437a-97fb-dc2a07ce3458",
        "showInput": true
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
329
      },
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
330
      "outputs": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
331
332
333
334
335
      "source": [
        "# visualization of the cameras\n",
        "plot = plot_scene({\"k\": {i: camera for i, camera in enumerate(tr_cameras)}}, camera_scale=0.25)\n",
        "plot.layout.scene.aspectmode = \"data\"\n",
        "plot"
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
336
      ]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
337
338
    },
    {
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
339
      "attachments": {},
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
340
341
      "cell_type": "markdown",
      "metadata": {
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
342
        "customInput": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
343
        "originalKey": "afa9c02d-f76b-4f68-83e9-9733c615406b",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
344
        "showInput": false
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
345
346
347
348
349
350
351
352
353
354
355
356
357
      },
      "source": [
        "## 2. Custom implicit function 🧊\n",
        "\n",
        "At the core of neural rendering methods are functions of spatial coordinates called implicit functions, which are used in some kind of rendering process.\n",
        "(Often those functions can additionally take other data as well, such as view direction.)\n",
        "A common rendering process is ray marching over densities and colors provided by an implicit function.\n",
        "In our case, taking samples from a 3D volume grid is a very simple function of spatial coordinates. \n",
        "\n",
        "Here we define our own implicit function, which uses PyTorch3D's existing functionality for sampling from a volume grid.\n",
        "We do this by subclassing `ImplicitFunctionBase`.\n",
        "We need to register our subclass with a special decorator.\n",
        "We use Python's dataclass annotations for configuring the module."
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
358
      ]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
359
360
361
    },
    {
      "cell_type": "code",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
362
      "execution_count": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
363
      "metadata": {
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
364
        "code_folding": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
365
        "collapsed": false,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
366
        "customInput": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
367
368
369
        "customOutput": null,
        "executionStartTime": 1659613575850,
        "executionStopTime": 1659613575940,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
370
371
372
373
        "hidden_ranges": [],
        "originalKey": "61b55043-dc52-4de7-992e-e2195edd2123",
        "requestMsgId": "dfaace3c-098c-4ffe-9240-6a7ae0ff271e",
        "showInput": true
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
374
      },
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
375
      "outputs": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
      "source": [
        "@registry.register\n",
        "class MyVolumes(ImplicitFunctionBase, torch.nn.Module):\n",
        "    grid_resolution: int = 50  # common HWD of volumes, the number of voxels in each direction\n",
        "    extent: float = 1.0  # In world coordinates, the volume occupies is [-extent, extent] along each axis\n",
        "\n",
        "    def __post_init__(self):\n",
        "        # We have to call this explicitly if there are other base classes like Module\n",
        "        super().__init__()\n",
        "\n",
        "        # We define parameters like other torch.nn.Module objects.\n",
        "        # In this case, both our parameter tensors are trainable; they govern the contents of the volume grid.\n",
        "        density = torch.full((self.grid_resolution, self.grid_resolution, self.grid_resolution), -2.0)\n",
        "        self.density = torch.nn.Parameter(density)\n",
        "        color = torch.full((3, self.grid_resolution, self.grid_resolution, self.grid_resolution), 0.0)\n",
        "        self.color = torch.nn.Parameter(color)\n",
        "        self.density_activation = torch.nn.Softplus()\n",
        "\n",
        "    def forward(\n",
        "        self,\n",
        "        ray_bundle: RayBundle,\n",
        "        fun_viewpool=None,\n",
        "        global_code=None,\n",
        "    ):\n",
        "        densities = self.density_activation(self.density[None, None])\n",
        "        voxel_size = 2.0 * float(self.extent) / self.grid_resolution\n",
        "        features = self.color.sigmoid()[None]\n",
        "\n",
        "        # Like other PyTorch3D structures, the actual Volumes object should only exist as long\n",
        "        # as one iteration of training. It is local to this function.\n",
        "\n",
        "        volume = Volumes(densities=densities, features=features, voxel_size=voxel_size)\n",
        "        sampler = VolumeSampler(volumes=volume)\n",
        "        densities, features = sampler(ray_bundle)\n",
        "\n",
        "        # When an implicit function is used for raymarching, i.e. for MultiPassEmissionAbsorptionRenderer,\n",
        "        # it must return (densities, features, an auxiliary tuple)\n",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
413
414
        "        return densities, features, {}\n"
      ]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
415
416
    },
    {
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
417
      "attachments": {},
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
418
419
      "cell_type": "markdown",
      "metadata": {
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
420
        "customInput": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
421
        "originalKey": "abaf2cd6-1b68-400e-a142-8fb9f49953f3",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
422
        "showInput": false
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
423
424
425
426
427
428
      },
      "source": [
        "## 3. Construct the model object.\n",
        "\n",
        "The main model object in PyTorch3D is `GenericModel`, which has pluggable components for the major steps, including the renderer and the implicit function(s).\n",
        "There are two ways to construct it which are equivalent here."
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
429
      ]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
430
431
432
    },
    {
      "cell_type": "code",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
433
      "execution_count": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
434
435
      "metadata": {
        "collapsed": false,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
436
        "customInput": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
437
438
        "customOutput": null,
        "executionStartTime": 1659621267561,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
439
440
441
442
        "executionStopTime": 1659621267938,
        "originalKey": "f26c3dce-fbae-4592-bd0e-e4a8abc57c2c",
        "requestMsgId": "9213687e-1caf-46a8-a4e5-a9c531530092",
        "showInput": true
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
443
      },
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
444
      "outputs": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
      "source": [
        "CONSTRUCT_MODEL_FROM_CONFIG = True\n",
        "if CONSTRUCT_MODEL_FROM_CONFIG:\n",
        "    # Via a DictConfig - this is how our training loop with hydra works\n",
        "    cfg = get_default_args(GenericModel)\n",
        "    cfg.implicit_function_class_type = \"MyVolumes\"\n",
        "    cfg.render_image_height=output_resolution\n",
        "    cfg.render_image_width=output_resolution\n",
        "    cfg.loss_weights={\"loss_rgb_huber\": 1.0}\n",
        "    cfg.tqdm_trigger_threshold=19000\n",
        "    cfg.raysampler_AdaptiveRaySampler_args.scene_extent= 4.0\n",
        "    gm = GenericModel(**cfg)\n",
        "else:\n",
        "    # constructing GenericModel directly\n",
        "    gm = GenericModel(\n",
        "        implicit_function_class_type=\"MyVolumes\",\n",
        "        render_image_height=output_resolution,\n",
        "        render_image_width=output_resolution,\n",
        "        loss_weights={\"loss_rgb_huber\": 1.0},\n",
        "        tqdm_trigger_threshold=19000,\n",
        "        raysampler_AdaptiveRaySampler_args = {\"scene_extent\": 4.0}\n",
        "    )\n",
        "\n",
        "    # In this case we can get the equivalent DictConfig cfg object to the way gm is configured as follows\n",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
469
470
        "    cfg = OmegaConf.structured(gm)\n"
      ]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
471
472
    },
    {
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
473
      "attachments": {},
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
474
475
      "cell_type": "markdown",
      "metadata": {
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
476
        "code_folding": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
477
        "collapsed": false,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
478
        "customInput": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
479
480
481
        "customOutput": null,
        "executionStartTime": 1659611214689,
        "executionStopTime": 1659611214748,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
482
483
484
485
        "hidden_ranges": [],
        "originalKey": "4e659f7d-ce66-4999-83de-005eb09d7705",
        "requestMsgId": "7b815b2b-cf19-44d0-ae89-76fde6df35ec",
        "showInput": false
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
486
487
488
      },
      "source": [
        " The default renderer is an emission-absorbtion raymarcher. We keep that default."
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
489
      ]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
490
491
492
    },
    {
      "cell_type": "code",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
493
      "execution_count": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
494
      "metadata": {
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
495
        "code_folding": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
496
        "collapsed": false,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
497
        "customInput": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
498
499
500
        "customOutput": null,
        "executionStartTime": 1659621268007,
        "executionStopTime": 1659621268190,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
501
502
503
504
        "hidden_ranges": [],
        "originalKey": "d37ae488-c57c-44d3-9def-825dc1a6495b",
        "requestMsgId": "71143ec1-730f-4876-8a14-e46eea9d6dd1",
        "showInput": true
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
505
      },
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
506
      "outputs": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
507
508
509
510
511
      "source": [
        "# We can display the configuration in use as follows.\n",
        "remove_unused_components(cfg)\n",
        "yaml = OmegaConf.to_yaml(cfg, sort_keys=False)\n",
        "%page -r yaml"
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
512
      ]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
513
514
515
    },
    {
      "cell_type": "code",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
516
      "execution_count": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
517
      "metadata": {
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
518
        "code_folding": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
519
        "collapsed": false,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
520
        "customInput": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
521
522
523
        "customOutput": null,
        "executionStartTime": 1659621268727,
        "executionStopTime": 1659621268776,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
524
525
526
527
        "hidden_ranges": [],
        "originalKey": "52e53179-3c6e-4c1f-a38a-3a6d803687bb",
        "requestMsgId": "05de9bc3-3f74-4a6f-851c-9ec919b59506",
        "showInput": true
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
528
      },
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
529
      "outputs": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
530
531
532
533
      "source": [
        "device = torch.device(\"cuda:0\")\n",
        "gm.to(device)\n",
        "assert next(gm.parameters()).is_cuda"
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
534
      ]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
535
536
537
538
    },
    {
      "cell_type": "markdown",
      "metadata": {
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
539
        "customInput": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
540
        "originalKey": "528a7d53-c645-49c2-9021-09adbb18cd23",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
541
        "showInput": false
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
542
543
544
545
546
547
548
      },
      "source": [
        "## 4. train the model "
      ]
    },
    {
      "cell_type": "code",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
549
      "execution_count": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
550
      "metadata": {
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
551
        "code_folding": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
552
        "collapsed": false,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
553
        "customInput": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
554
555
556
        "customOutput": null,
        "executionStartTime": 1659621270236,
        "executionStopTime": 1659621270446,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
557
558
559
560
        "hidden_ranges": [],
        "originalKey": "953280bd-3161-42ba-8dcb-0c8ef2d5cc25",
        "requestMsgId": "9bba424b-7bfd-4e5a-9d79-ae316e20bab0",
        "showInput": true
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
561
      },
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
562
      "outputs": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
563
564
      "source": [
        "train_data_collated = [FrameData.collate([frame.to(device)]) for frame in dataset_map.train]"
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
565
      ]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
566
567
568
    },
    {
      "cell_type": "code",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
569
      "execution_count": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
570
      "metadata": {
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
571
        "code_folding": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
572
        "collapsed": false,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
573
        "customInput": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
574
575
576
        "customOutput": null,
        "executionStartTime": 1659621270815,
        "executionStopTime": 1659621270948,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
577
578
579
580
        "hidden_ranges": [],
        "originalKey": "2fcf07f0-0c28-49c7-8c76-1c9a9d810167",
        "requestMsgId": "821deb43-6084-4ece-83c3-dee214562c47",
        "showInput": true
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
581
      },
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
582
      "outputs": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
583
584
585
      "source": [
        "gm.train()\n",
        "optimizer = torch.optim.Adam(gm.parameters(), lr=0.1)"
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
586
      ]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
587
588
589
    },
    {
      "cell_type": "code",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
590
      "execution_count": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
591
      "metadata": {
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
592
        "code_folding": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
593
594
595
596
        "collapsed": false,
        "customOutput": null,
        "executionStartTime": 1659621271875,
        "executionStopTime": 1659621298146,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
597
598
599
600
        "hidden_ranges": [],
        "originalKey": "105099f7-ed0c-4e7f-a976-61a93fd0a8fe",
        "requestMsgId": "0c87c108-83e3-4129-ad02-85e0140f1368",
        "showInput": true
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
601
      },
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
602
      "outputs": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
603
604
605
606
607
608
609
610
611
612
613
      "source": [
        "iterator = tqdm.tqdm(range(2000))\n",
        "for n_batch in iterator:\n",
        "    optimizer.zero_grad()\n",
        "\n",
        "    frame = train_data_collated[n_batch % len(dataset_map.train)]\n",
        "    out = gm(**frame, evaluation_mode=EvaluationMode.TRAINING)\n",
        "    out[\"objective\"].backward()\n",
        "    if n_batch % 100 == 0:\n",
        "        iterator.set_postfix_str(f\"loss: {float(out['objective']):.5f}\")\n",
        "    optimizer.step()"
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
614
      ]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
615
616
    },
    {
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
617
      "attachments": {},
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
618
619
620
      "cell_type": "markdown",
      "metadata": {
        "collapsed": false,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
621
        "customInput": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
622
623
        "customOutput": null,
        "executionStartTime": 1659535024768,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
624
625
626
627
        "executionStopTime": 1659535024906,
        "originalKey": "e3cd494a-536b-48bc-8290-c048118c82eb",
        "requestMsgId": "e3cd494a-536b-48bc-8290-c048118c82eb",
        "showInput": false
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
628
629
630
631
632
      },
      "source": [
        "## 5. Evaluate the module\n",
        "\n",
        "We generate complete images from all the viewpoints to see how they look."
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
633
      ]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
634
635
636
    },
    {
      "cell_type": "code",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
637
      "execution_count": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
638
      "metadata": {
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
639
        "code_folding": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
640
        "collapsed": false,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
641
        "customInput": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
642
643
644
        "customOutput": null,
        "executionStartTime": 1659621299859,
        "executionStopTime": 1659621311133,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
645
646
647
648
        "hidden_ranges": [],
        "originalKey": "fbe1b2ea-cc24-4b20-a2d7-0249185e34a5",
        "requestMsgId": "771ef1f8-5eee-4932-9e81-33604bf0512a",
        "showInput": true
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
649
      },
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
650
      "outputs": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
      "source": [
        "def to_numpy_image(image):\n",
        "    # Takes an image of shape (C, H, W) in [0,1], where C=3 or 1\n",
        "    # to a numpy uint image of shape (H, W, 3)\n",
        "    return (image * 255).to(torch.uint8).permute(1, 2, 0).detach().cpu().expand(-1, -1, 3).numpy()\n",
        "def resize_image(image):\n",
        "    # Takes images of shape (B, C, H, W) to (B, C, output_resolution, output_resolution)\n",
        "    return torch.nn.functional.interpolate(image, size=(output_resolution, output_resolution))\n",
        "\n",
        "gm.eval()\n",
        "images = []\n",
        "expected = []\n",
        "masks = []\n",
        "masks_expected = []\n",
        "for frame in tqdm.tqdm(train_data_collated):\n",
        "    with torch.no_grad():\n",
        "        out = gm(**frame, evaluation_mode=EvaluationMode.EVALUATION)\n",
        "\n",
        "    image_rgb = to_numpy_image(out[\"images_render\"][0])\n",
        "    mask = to_numpy_image(out[\"masks_render\"][0])\n",
        "    expd = to_numpy_image(resize_image(frame.image_rgb)[0])\n",
        "    mask_expected = to_numpy_image(resize_image(frame.fg_probability)[0])\n",
        "\n",
        "    images.append(image_rgb)\n",
        "    masks.append(mask)\n",
        "    expected.append(expd)\n",
        "    masks_expected.append(mask_expected)"
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
678
      ]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
679
680
    },
    {
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
681
      "attachments": {},
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
682
683
684
      "cell_type": "markdown",
      "metadata": {
        "collapsed": false,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
685
        "customInput": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
686
687
        "customOutput": null,
        "executionStartTime": 1659614622542,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
688
689
690
691
        "executionStopTime": 1659614622757,
        "originalKey": "24953039-9780-40fd-bd81-5d63e9f40069",
        "requestMsgId": "7af895a3-dfe4-4c28-ac3b-4ff0fbb40c7f",
        "showInput": false
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
      },
      "source": [
        "We draw a grid showing predicted image and expected image, followed by predicted mask and expected mask, from each viewpoint. \n",
        "This is a grid of four rows of images, wrapped in to several large rows, i.e..\n",
        "<small><center>\n",
        "```\n",
        "┌────────┬────────┐           ┌────────┐\n",
        "│pred    │pred    │           │pred    │\n",
        "│image   │image   │           │image   │\n",
        "│1       │2       │           │n       │\n",
        "├────────┼────────┤           ├────────┤\n",
        "│expected│expected│           │expected│\n",
        "│image   │image   │  ...      │image   │\n",
        "│1       │2       │           │n       │\n",
        "├────────┼────────┤           ├────────┤\n",
        "│pred    │pred    │           │pred    │\n",
        "│mask    │mask    │           │mask    │\n",
        "│1       │2       │           │n       │\n",
        "├────────┼────────┤           ├────────┤\n",
        "│expected│expected│           │expected│\n",
        "│mask    │mask    │           │mask    │\n",
        "│1       │2       │           │n       │\n",
        "├────────┼────────┤           ├────────┤\n",
        "│pred    │pred    │           │pred    │\n",
        "│image   │image   │           │image   │\n",
        "│n+1     │n+1     │           │2n      │\n",
        "├────────┼────────┤           ├────────┤\n",
        "│expected│expected│           │expected│\n",
        "│image   │image   │  ...      │image   │\n",
        "│n+1     │n+2     │           │2n      │\n",
        "├────────┼────────┤           ├────────┤\n",
        "│pred    │pred    │           │pred    │\n",
        "│mask    │mask    │           │mask    │\n",
        "│n+1     │n+2     │           │2n      │\n",
        "├────────┼────────┤           ├────────┤\n",
        "│expected│expected│           │expected│\n",
        "│mask    │mask    │           │mask    │\n",
        "│n+1     │n+2     │           │2n      │\n",
        "└────────┴────────┘           └────────┘\n",
        "           ...\n",
        "```\n",
        "</center></small>"
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
734
      ]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
735
736
737
    },
    {
      "cell_type": "code",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
738
      "execution_count": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
739
      "metadata": {
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
740
        "code_folding": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
741
        "collapsed": false,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
742
        "customInput": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
743
744
745
        "customOutput": null,
        "executionStartTime": 1659621313894,
        "executionStopTime": 1659621314042,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
746
747
748
749
        "hidden_ranges": [],
        "originalKey": "c488a34a-e46d-4649-93fb-4b1bb5a0e439",
        "requestMsgId": "4221e632-fca1-4fe5-b2e3-f92c37aa40e4",
        "showInput": true
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
750
      },
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
751
      "outputs": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
      "source": [
        "images_to_display = [images.copy(), expected.copy(), masks.copy(), masks_expected.copy()]\n",
        "n_rows = 4\n",
        "n_images = len(images)\n",
        "blank_image = images[0] * 0\n",
        "n_per_row = 1+(n_images-1)//n_rows\n",
        "for _ in range(n_per_row*n_rows - n_images):\n",
        "    for group in images_to_display:\n",
        "        group.append(blank_image)\n",
        "\n",
        "images_to_display_listed = [[[i] for i in j] for j in images_to_display]\n",
        "split = []\n",
        "for row in range(n_rows):\n",
        "    for group in images_to_display_listed:\n",
        "        split.append(group[row*n_per_row:(row+1)*n_per_row])  \n",
        "\n",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
768
769
        "Image.fromarray(np.block(split))\n"
      ]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
770
771
772
    },
    {
      "cell_type": "code",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
773
      "execution_count": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
774
      "metadata": {
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
775
        "code_folding": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
776
        "collapsed": false,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
777
        "customInput": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
778
779
780
        "customOutput": null,
        "executionStartTime": 1659621323795,
        "executionStopTime": 1659621323820,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
781
782
783
784
        "hidden_ranges": [],
        "originalKey": "49eab9e1-4fe2-4fbe-b4f3-7b6953340170",
        "requestMsgId": "85b402ad-f903-431f-a13e-c2d697e869bb",
        "showInput": true
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
785
      },
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
786
      "outputs": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
787
788
789
      "source": [
        "# Print the maximum channel intensity in the first image.\n",
        "print(images[1].max()/255)"
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
790
      ]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
791
792
793
    },
    {
      "cell_type": "code",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
794
      "execution_count": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
795
      "metadata": {
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
796
797
        "code_folding": [],
        "collapsed": false,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
798
799
        "customInput": null,
        "customOutput": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
800
801
        "executionStartTime": 1659621408642,
        "executionStopTime": 1659621409559,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
802
        "hidden_ranges": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
803
        "originalKey": "137d2c43-d39d-4266-ac5e-2b714da5e0ee",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
804
        "requestMsgId": "8e27ec57-c2d6-4ae0-be69-b63b6af929ff",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
805
        "showInput": true
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
806
      },
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
807
      "outputs": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
808
809
810
811
812
813
814
      "source": [
        "plt.ioff()\n",
        "fig, ax = plt.subplots(figsize=(3,3))\n",
        "\n",
        "ax.grid(None)\n",
        "ims = [[ax.imshow(im, animated=True)] for im in images]\n",
        "ani = animation.ArtistAnimation(fig, ims, interval=80, blit=True)\n",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
815
816
        "ani_html = ani.to_jshtml()\n"
      ]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
817
818
819
    },
    {
      "cell_type": "code",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
820
      "execution_count": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
821
822
      "metadata": {
        "collapsed": false,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
823
        "customInput": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
824
825
        "customOutput": null,
        "executionStartTime": 1659621409620,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
826
827
828
829
        "executionStopTime": 1659621409725,
        "originalKey": "783e70d6-7cf1-4d76-a126-ba11ffc2f5be",
        "requestMsgId": "b6843506-c5fa-4508-80fc-8ecae51a934a",
        "showInput": true
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
830
      },
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
831
      "outputs": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
832
833
      "source": [
        "HTML(ani_html)"
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
834
      ]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
835
836
837
    },
    {
      "cell_type": "code",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
838
      "execution_count": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
839
840
      "metadata": {
        "collapsed": false,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
841
        "customInput": null,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
842
843
        "customOutput": null,
        "executionStartTime": 1659614670081,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
844
845
846
847
        "executionStopTime": 1659614670168,
        "originalKey": "0286c350-2362-4f47-8181-2fc2ba51cfcf",
        "requestMsgId": "976f4db9-d4c7-466c-bcfd-218234400226",
        "showInput": true
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
848
      },
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
849
      "outputs": [],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
850
851
852
853
      "source": [
        "# If you want to see the output of the model with the volume forced to opaque white, run this and re-evaluate\n",
        "# with torch.no_grad():\n",
        "#      gm._implicit_functions[0]._fn.density.fill_(9.0)\n",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
854
855
        "#      gm._implicit_functions[0]._fn.color.fill_(9.0)\n"
      ]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
856
    }
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
  ],
  "metadata": {
    "bento_stylesheets": {
      "bento/extensions/flow/main.css": true,
      "bento/extensions/kernel_selector/main.css": true,
      "bento/extensions/kernel_ui/main.css": true,
      "bento/extensions/new_kernel/main.css": true,
      "bento/extensions/system_usage/main.css": true,
      "bento/extensions/theme/main.css": true
    },
    "captumWidgetMessage": {},
    "dataExplorerConfig": {},
    "kernelspec": {
      "display_name": "pytorch3d",
      "language": "python",
      "metadata": {
        "cinder_runtime": false,
        "fbpkg_supported": true,
        "is_prebuilt": true,
        "kernel_name": "bento_kernel_pytorch3d",
        "nightly_builds": true
      },
      "name": "bento_kernel_pytorch3d"
    },
    "language_info": {
      "codemirror_mode": {
        "name": "ipython",
        "version": 3
      },
      "file_extension": ".py",
      "mimetype": "text/x-python",
      "name": "python",
      "nbconvert_exporter": "python",
      "pygments_lexer": "ipython3"
    },
    "last_base_url": "https://9177.od.fbinfra.net:443/",
    "last_kernel_id": "bb33cd83-7924-489a-8bd8-2d9d62eb0126",
    "last_msg_id": "99f7088e-d22b355b859660479ef0574e_5743",
    "last_server_session_id": "2944b203-9ea8-4c0e-9634-645dfea5f26b",
    "outputWidgetContext": {}
  },
  "nbformat": 4,
  "nbformat_minor": 2
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
900
}