test_packed_to_padded.py 9.85 KB
Newer Older
1
2
3
4
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.

import unittest

5
6
import torch
from common_testing import TestCaseMixin
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
from pytorch3d.ops import packed_to_padded, padded_to_packed
from pytorch3d.structures.meshes import Meshes


class TestPackedToPadded(TestCaseMixin, unittest.TestCase):
    def setUp(self) -> None:
        super().setUp()
        torch.manual_seed(1)

    @staticmethod
    def init_meshes(
        num_meshes: int = 10,
        num_verts: int = 1000,
        num_faces: int = 3000,
        device: str = "cpu",
    ):
        device = torch.device(device)
        verts_list = []
        faces_list = []
        for _ in range(num_meshes):
27
            verts = torch.rand((num_verts, 3), dtype=torch.float32, device=device)
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
            faces = torch.randint(
                num_verts, size=(num_faces, 3), dtype=torch.int64, device=device
            )
            verts_list.append(verts)
            faces_list.append(faces)
        meshes = Meshes(verts_list, faces_list)

        return meshes

    @staticmethod
    def packed_to_padded_python(inputs, first_idxs, max_size, device):
        """
        PyTorch implementation of packed_to_padded function.
        """
        num_meshes = first_idxs.size(0)
        D = inputs.shape[1] if inputs.dim() == 2 else 0
        if D == 0:
            inputs_padded = torch.zeros((num_meshes, max_size), device=device)
        else:
47
            inputs_padded = torch.zeros((num_meshes, max_size, D), device=device)
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
        for m in range(num_meshes):
            s = first_idxs[m]
            if m == num_meshes - 1:
                f = inputs.shape[0]
            else:
                f = first_idxs[m + 1]
            inputs_padded[m, :f] = inputs[s:f]

        return inputs_padded

    @staticmethod
    def padded_to_packed_python(inputs, first_idxs, num_inputs, device):
        """
        PyTorch implementation of padded_to_packed function.
        """
        num_meshes = inputs.size(0)
        D = inputs.shape[2] if inputs.dim() == 3 else 0
        if D == 0:
            inputs_packed = torch.zeros((num_inputs,), device=device)
        else:
            inputs_packed = torch.zeros((num_inputs, D), device=device)
        for m in range(num_meshes):
            s = first_idxs[m]
            if m == num_meshes - 1:
                f = num_inputs
            else:
                f = first_idxs[m + 1]
            inputs_packed[s:f] = inputs[m, :f]

        return inputs_packed

    def _test_packed_to_padded_helper(self, D, device):
        """
        Check the results from packed_to_padded and PyTorch implementations
        are the same.
        """
        meshes = self.init_meshes(16, 100, 300, device=device)
        faces = meshes.faces_packed()
        mesh_to_faces_packed_first_idx = meshes.mesh_to_faces_packed_first_idx()
        max_faces = meshes.num_faces_per_mesh().max().item()

        if D == 0:
90
            values = torch.rand((faces.shape[0],), device=device, requires_grad=True)
91
        else:
92
            values = torch.rand((faces.shape[0], D), device=device, requires_grad=True)
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
        values_torch = values.detach().clone()
        values_torch.requires_grad = True
        values_padded = packed_to_padded(
            values, mesh_to_faces_packed_first_idx, max_faces
        )
        values_padded_torch = TestPackedToPadded.packed_to_padded_python(
            values_torch, mesh_to_faces_packed_first_idx, max_faces, device
        )
        # check forward
        self.assertClose(values_padded, values_padded_torch)

        # check backward
        if D == 0:
            grad_inputs = torch.rand((len(meshes), max_faces), device=device)
        else:
            grad_inputs = torch.rand((len(meshes), max_faces, D), device=device)
        values_padded.backward(grad_inputs)
        grad_outputs = values.grad
        values_padded_torch.backward(grad_inputs)
        grad_outputs_torch1 = values_torch.grad
        grad_outputs_torch2 = TestPackedToPadded.padded_to_packed_python(
114
            grad_inputs, mesh_to_faces_packed_first_idx, values.size(0), device=device
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
        )
        self.assertClose(grad_outputs, grad_outputs_torch1)
        self.assertClose(grad_outputs, grad_outputs_torch2)

    def test_packed_to_padded_flat_cpu(self):
        self._test_packed_to_padded_helper(0, "cpu")

    def test_packed_to_padded_D1_cpu(self):
        self._test_packed_to_padded_helper(1, "cpu")

    def test_packed_to_padded_D16_cpu(self):
        self._test_packed_to_padded_helper(16, "cpu")

    def test_packed_to_padded_flat_cuda(self):
        self._test_packed_to_padded_helper(0, "cuda:0")

    def test_packed_to_padded_D1_cuda(self):
        self._test_packed_to_padded_helper(1, "cuda:0")

    def test_packed_to_padded_D16_cuda(self):
        self._test_packed_to_padded_helper(16, "cuda:0")

    def _test_padded_to_packed_helper(self, D, device):
        """
        Check the results from packed_to_padded and PyTorch implementations
        are the same.
        """
        meshes = self.init_meshes(16, 100, 300, device=device)
        mesh_to_faces_packed_first_idx = meshes.mesh_to_faces_packed_first_idx()
        num_faces_per_mesh = meshes.num_faces_per_mesh()
        max_faces = num_faces_per_mesh.max().item()
        if D == 0:
            values = torch.rand((len(meshes), max_faces), device=device)
        else:
            values = torch.rand((len(meshes), max_faces, D), device=device)
        for i, num in enumerate(num_faces_per_mesh):
            values[i, num:] = 0
        values.requires_grad = True
        values_torch = values.detach().clone()
        values_torch.requires_grad = True
        values_packed = padded_to_packed(
156
            values, mesh_to_faces_packed_first_idx, num_faces_per_mesh.sum().item()
157
158
159
160
161
162
163
164
165
166
167
168
        )
        values_packed_torch = TestPackedToPadded.padded_to_packed_python(
            values_torch,
            mesh_to_faces_packed_first_idx,
            num_faces_per_mesh.sum().item(),
            device,
        )
        # check forward
        self.assertClose(values_packed, values_packed_torch)

        # check backward
        if D == 0:
169
            grad_inputs = torch.rand((num_faces_per_mesh.sum().item()), device=device)
170
171
172
173
174
175
176
177
178
        else:
            grad_inputs = torch.rand(
                (num_faces_per_mesh.sum().item(), D), device=device
            )
        values_packed.backward(grad_inputs)
        grad_outputs = values.grad
        values_packed_torch.backward(grad_inputs)
        grad_outputs_torch1 = values_torch.grad
        grad_outputs_torch2 = TestPackedToPadded.packed_to_padded_python(
179
            grad_inputs, mesh_to_faces_packed_first_idx, values.size(1), device=device
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
        )
        self.assertClose(grad_outputs, grad_outputs_torch1)
        self.assertClose(grad_outputs, grad_outputs_torch2)

    def test_padded_to_packed_flat_cpu(self):
        self._test_padded_to_packed_helper(0, "cpu")

    def test_padded_to_packed_D1_cpu(self):
        self._test_padded_to_packed_helper(1, "cpu")

    def test_padded_to_packed_D16_cpu(self):
        self._test_padded_to_packed_helper(16, "cpu")

    def test_padded_to_packed_flat_cuda(self):
        self._test_padded_to_packed_helper(0, "cuda:0")

    def test_padded_to_packed_D1_cuda(self):
        self._test_padded_to_packed_helper(1, "cuda:0")

    def test_padded_to_packed_D16_cuda(self):
        self._test_padded_to_packed_helper(16, "cuda:0")

    def test_invalid_inputs_shapes(self, device="cuda:0"):
203
        with self.assertRaisesRegex(ValueError, "input can only be 2-dimensional."):
204
205
206
207
            values = torch.rand((100, 50, 2), device=device)
            first_idxs = torch.tensor([0, 80], dtype=torch.int64, device=device)
            packed_to_padded(values, first_idxs, 100)

208
        with self.assertRaisesRegex(ValueError, "input can only be 3-dimensional."):
209
210
211
212
            values = torch.rand((100,), device=device)
            first_idxs = torch.tensor([0, 80], dtype=torch.int64, device=device)
            padded_to_packed(values, first_idxs, 20)

213
        with self.assertRaisesRegex(ValueError, "input can only be 3-dimensional."):
214
215
216
217
218
219
            values = torch.rand((100, 50, 2, 2), device=device)
            first_idxs = torch.tensor([0, 80], dtype=torch.int64, device=device)
            padded_to_packed(values, first_idxs, 20)

    @staticmethod
    def packed_to_padded_with_init(
220
        num_meshes: int, num_verts: int, num_faces: int, num_d: int, device: str = "cpu"
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
    ):
        meshes = TestPackedToPadded.init_meshes(
            num_meshes, num_verts, num_faces, device
        )
        faces = meshes.faces_packed()
        mesh_to_faces_packed_first_idx = meshes.mesh_to_faces_packed_first_idx()
        max_faces = meshes.num_faces_per_mesh().max().item()
        if num_d == 0:
            values = torch.rand((faces.shape[0],), device=meshes.device)
        else:
            values = torch.rand((faces.shape[0], num_d), device=meshes.device)
        torch.cuda.synchronize()

        def out():
            packed_to_padded(values, mesh_to_faces_packed_first_idx, max_faces)
            torch.cuda.synchronize()

        return out

    @staticmethod
    def packed_to_padded_with_init_torch(
242
        num_meshes: int, num_verts: int, num_faces: int, num_d: int, device: str = "cpu"
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
    ):
        meshes = TestPackedToPadded.init_meshes(
            num_meshes, num_verts, num_faces, device
        )
        faces = meshes.faces_packed()
        mesh_to_faces_packed_first_idx = meshes.mesh_to_faces_packed_first_idx()
        max_faces = meshes.num_faces_per_mesh().max().item()
        if num_d == 0:
            values = torch.rand((faces.shape[0],), device=meshes.device)
        else:
            values = torch.rand((faces.shape[0], num_d), device=meshes.device)
        torch.cuda.synchronize()

        def out():
            TestPackedToPadded.packed_to_padded_python(
                values, mesh_to_faces_packed_first_idx, max_faces, device
            )
            torch.cuda.synchronize()

        return out