test_se3.py 12.4 KB
Newer Older
1
# Copyright (c) Meta Platforms, Inc. and affiliates.
Patrick Labatut's avatar
Patrick Labatut committed
2
3
4
5
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
6
7
8
9
10
11
12
13


import unittest

import numpy as np
import torch
from pytorch3d.transforms.rotation_conversions import random_rotations
from pytorch3d.transforms.se3 import se3_exp_map, se3_log_map
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
14
from pytorch3d.transforms.so3 import so3_exp_map, so3_log_map, so3_rotation_angle
15

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
16
17
from .common_testing import TestCaseMixin

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

class TestSE3(TestCaseMixin, unittest.TestCase):
    precomputed_log_transform = torch.tensor(
        [
            [0.1900, 2.1600, -0.1700, 0.8500, -1.9200, 0.6500],
            [-0.6500, -0.8200, 0.5300, -1.2800, -1.6600, -0.3000],
            [-0.0900, 0.2000, -1.1200, 1.8600, -0.7100, 0.6900],
            [0.8000, -0.0300, 1.4900, -0.5200, -0.2500, 1.4700],
            [-0.3300, -1.1600, 2.3600, -0.6900, 0.1800, -1.1800],
            [-1.8000, -1.5800, 0.8400, 1.4200, 0.6500, 0.4300],
            [-1.5900, 0.6200, 1.6900, -0.6600, 0.9400, 0.0800],
            [0.0800, -0.1400, 0.3300, -0.5900, -1.0700, 0.1000],
            [-0.3300, -0.5300, -0.8800, 0.3900, 0.1600, -0.2000],
            [1.0100, -1.3500, -0.3500, -0.6400, 0.4500, -0.5400],
        ],
        dtype=torch.float32,
    )

    precomputed_transform = torch.tensor(
        [
            [
                [-0.3496, -0.2966, 0.8887, 0.0000],
                [-0.7755, 0.6239, -0.0968, 0.0000],
                [-0.5258, -0.7230, -0.4481, 0.0000],
                [-0.7392, 1.9119, 0.3122, 1.0000],
            ],
            [
                [0.0354, 0.5992, 0.7998, 0.0000],
                [0.8413, 0.4141, -0.3475, 0.0000],
                [-0.5395, 0.6852, -0.4894, 0.0000],
                [-0.9902, -0.4840, 0.1226, 1.0000],
            ],
            [
                [0.6664, -0.1679, 0.7264, 0.0000],
                [-0.7309, -0.3394, 0.5921, 0.0000],
                [0.1471, -0.9255, -0.3489, 0.0000],
                [-0.0815, 0.8719, -0.4516, 1.0000],
            ],
            [
                [0.1010, 0.9834, -0.1508, 0.0000],
                [-0.8783, 0.0169, -0.4779, 0.0000],
                [-0.4674, 0.1807, 0.8654, 0.0000],
                [0.2375, 0.7043, 1.4159, 1.0000],
            ],
            [
                [0.3935, -0.8930, 0.2184, 0.0000],
                [0.7873, 0.2047, -0.5817, 0.0000],
                [0.4747, 0.4009, 0.7836, 0.0000],
                [-0.3476, -0.0424, 2.5408, 1.0000],
            ],
            [
                [0.7572, 0.6342, -0.1567, 0.0000],
                [0.1039, 0.1199, 0.9873, 0.0000],
                [0.6449, -0.7638, 0.0249, 0.0000],
                [-1.2885, -2.0666, -0.1137, 1.0000],
            ],
            [
                [0.6020, -0.2140, -0.7693, 0.0000],
                [-0.3409, 0.8024, -0.4899, 0.0000],
                [0.7221, 0.5572, 0.4101, 0.0000],
                [-0.7550, 1.1928, 1.8480, 1.0000],
            ],
            [
                [0.4913, 0.3548, 0.7954, 0.0000],
                [0.2013, 0.8423, -0.5000, 0.0000],
                [-0.8474, 0.4058, 0.3424, 0.0000],
                [-0.1003, -0.0406, 0.3295, 1.0000],
            ],
            [
                [0.9678, -0.1622, -0.1926, 0.0000],
                [0.2235, 0.9057, 0.3603, 0.0000],
                [0.1160, -0.3917, 0.9128, 0.0000],
                [-0.4417, -0.3111, -0.9227, 1.0000],
            ],
            [
                [0.7710, -0.5957, -0.2250, 0.0000],
                [0.3288, 0.6750, -0.6605, 0.0000],
                [0.5454, 0.4352, 0.7163, 0.0000],
                [0.5623, -1.5886, -0.0182, 1.0000],
            ],
        ],
        dtype=torch.float32,
    )

    def setUp(self) -> None:
        super().setUp()
        torch.manual_seed(42)
        np.random.seed(42)

    @staticmethod
    def init_log_transform(batch_size: int = 10):
        """
        Initialize a list of `batch_size` 6-dimensional vectors representing
        randomly generated logarithms of SE(3) transforms.
        """
        device = torch.device("cuda:0")
        log_rot = torch.randn((batch_size, 6), dtype=torch.float32, device=device)
        return log_rot

    @staticmethod
    def init_transform(batch_size: int = 10):
        """
        Initialize a list of `batch_size` 4x4 SE(3) transforms.
        """
        device = torch.device("cuda:0")
        transform = torch.zeros(batch_size, 4, 4, dtype=torch.float32, device=device)
        transform[:, :3, :3] = random_rotations(
            batch_size, dtype=torch.float32, device=device
        )
        transform[:, 3, :3] = torch.randn(
            (batch_size, 3), dtype=torch.float32, device=device
        )
        transform[:, 3, 3] = 1.0
        return transform

    def test_se3_exp_output_format(self, batch_size: int = 100):
        """
        Check that the output of `se3_exp_map` is a valid SE3 matrix.
        """
        transform = se3_exp_map(TestSE3.init_log_transform(batch_size=batch_size))
        R = transform[:, :3, :3]
        T = transform[:, 3, :3]
        rest = transform[:, :, 3]
        Rdet = R.det()

        # check det(R)==1
        self.assertClose(Rdet, torch.ones_like(Rdet), atol=1e-4)

        # check that the translation is a finite vector
        self.assertTrue(torch.isfinite(T).all())

        # check last column == [0,0,0,1]
        last_col = rest.new_zeros(batch_size, 4)
        last_col[:, -1] = 1.0
        self.assertClose(rest, last_col)

    def test_compare_with_precomputed(self):
        """
        Compare the outputs against precomputed results.
        """
        self.assertClose(
            se3_log_map(self.precomputed_transform),
            self.precomputed_log_transform,
            atol=1e-4,
        )
        self.assertClose(
            self.precomputed_transform,
            se3_exp_map(self.precomputed_log_transform),
            atol=1e-4,
        )

    def test_se3_exp_singularity(self, batch_size: int = 100):
        """
        Tests whether the `se3_exp_map` is robust to the input vectors
        with low L2 norms, where the algorithm is numerically unstable.
        """
        # generate random log-rotations with a tiny angle
        log_rot = TestSE3.init_log_transform(batch_size=batch_size)
        log_rot_small = log_rot * 1e-6
        log_rot_small.requires_grad = True
        transforms = se3_exp_map(log_rot_small)
        # tests whether all outputs are finite
        self.assertTrue(torch.isfinite(transforms).all())
        # tests whether all gradients are finite and not None
        loss = transforms.sum()
        loss.backward()
        self.assertIsNotNone(log_rot_small.grad)
        self.assertTrue(torch.isfinite(log_rot_small.grad).all())

    def test_se3_log_singularity(self, batch_size: int = 100):
        """
        Tests whether the `se3_log_map` is robust to the input matrices
        whose rotation angles and translations are close to the numerically
        unstable region (i.e. matrices with low rotation angles
        and 0 translation).
        """
        # generate random rotations with a tiny angle
        device = torch.device("cuda:0")
        identity = torch.eye(3, device=device)
        rot180 = identity * torch.tensor([[1.0, -1.0, -1.0]], device=device)
        r = [identity, rot180]
        r.extend(
            [
201
                torch.linalg.qr(identity + torch.randn_like(identity) * 1e-6)[0]
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
                + float(i > batch_size // 2) * (0.5 - torch.rand_like(identity)) * 1e-8
                # this adds random noise to the second half
                # of the random orthogonal matrices to generate
                # near-orthogonal matrices
                for i in range(batch_size - 2)
            ]
        )
        r = torch.stack(r)
        # tiny translations
        t = torch.randn(batch_size, 3, dtype=r.dtype, device=device) * 1e-6
        # create the transform matrix
        transform = torch.zeros(batch_size, 4, 4, dtype=torch.float32, device=device)
        transform[:, :3, :3] = r
        transform[:, 3, :3] = t
        transform[:, 3, 3] = 1.0
        transform.requires_grad = True
        # the log of the transform
        log_transform = se3_log_map(transform, eps=1e-4, cos_bound=1e-4)
        # tests whether all outputs are finite
        self.assertTrue(torch.isfinite(log_transform).all())
        # tests whether all gradients are finite and not None
        loss = log_transform.sum()
        loss.backward()
        self.assertIsNotNone(transform.grad)
        self.assertTrue(torch.isfinite(transform.grad).all())

    def test_se3_exp_zero_translation(self, batch_size: int = 100):
        """
        Check that `se3_exp_map` with zero translation gives
        the same result as corresponding `so3_exp_map`.
        """
        log_transform = TestSE3.init_log_transform(batch_size=batch_size)
        log_transform[:, :3] *= 0.0
        transform = se3_exp_map(log_transform, eps=1e-8)
        transform_so3 = so3_exp_map(log_transform[:, 3:], eps=1e-8)
        self.assertClose(
            transform[:, :3, :3], transform_so3.permute(0, 2, 1), atol=1e-4
        )
        self.assertClose(
            transform[:, 3, :3], torch.zeros_like(transform[:, :3, 3]), atol=1e-4
        )

    def test_se3_log_zero_translation(self, batch_size: int = 100):
        """
        Check that `se3_log_map` with zero translation gives
        the same result as corresponding `so3_log_map`.
        """
        transform = TestSE3.init_transform(batch_size=batch_size)
        transform[:, 3, :3] *= 0.0
        log_transform = se3_log_map(transform, eps=1e-8, cos_bound=1e-4)
        log_transform_so3 = so3_log_map(transform[:, :3, :3], eps=1e-8, cos_bound=1e-4)
        self.assertClose(log_transform[:, 3:], -log_transform_so3, atol=1e-4)
        self.assertClose(
            log_transform[:, :3], torch.zeros_like(log_transform[:, :3]), atol=1e-4
        )

    def test_se3_exp_to_log_to_exp(self, batch_size: int = 10000):
        """
        Check that `se3_exp_map(se3_log_map(A))==A` for
        a batch of randomly generated SE(3) matrices `A`.
        """
        transform = TestSE3.init_transform(batch_size=batch_size)
        # Limit test transforms to those not around the singularity where
        # the rotation angle~=pi.
        nonsingular = so3_rotation_angle(transform[:, :3, :3]) < 3.134
        transform = transform[nonsingular]
        transform_ = se3_exp_map(
            se3_log_map(transform, eps=1e-8, cos_bound=0.0), eps=1e-8
        )
        self.assertClose(transform, transform_, atol=0.02)

    def test_se3_log_to_exp_to_log(self, batch_size: int = 100):
        """
        Check that `se3_log_map(se3_exp_map(log_transform))==log_transform`
        for a randomly generated batch of SE(3) matrix logarithms `log_transform`.
        """
        log_transform = TestSE3.init_log_transform(batch_size=batch_size)
        log_transform_ = se3_log_map(se3_exp_map(log_transform, eps=1e-8), eps=1e-8)
        self.assertClose(log_transform, log_transform_, atol=1e-1)

    def test_bad_se3_input_value_err(self):
        """
        Tests whether `se3_exp_map` and `se3_log_map` correctly return
        a ValueError if called with an argument of incorrect shape, or with
        an tensor containing illegal values.
        """
        device = torch.device("cuda:0")

        for size in ([5, 4], [3, 4, 5], [3, 5, 6]):
            log_transform = torch.randn(size=size, device=device)
            with self.assertRaises(ValueError):
                se3_exp_map(log_transform)

        for size in ([5, 4], [3, 4, 5], [3, 5, 6], [2, 2, 3, 4]):
            transform = torch.randn(size=size, device=device)
            with self.assertRaises(ValueError):
                se3_log_map(transform)

        # Test the case where transform[:, :, :3] != 0.
        transform = torch.rand(size=[5, 4, 4], device=device) + 0.1
        with self.assertRaises(ValueError):
            se3_log_map(transform)

    @staticmethod
    def se3_expmap(batch_size: int = 10):
        log_transform = TestSE3.init_log_transform(batch_size=batch_size)
        torch.cuda.synchronize()

        def compute_transforms():
            se3_exp_map(log_transform)
            torch.cuda.synchronize()

        return compute_transforms

    @staticmethod
    def se3_logmap(batch_size: int = 10):
        log_transform = TestSE3.init_transform(batch_size=batch_size)
        torch.cuda.synchronize()

        def compute_logs():
            se3_log_map(log_transform)
            torch.cuda.synchronize()

        return compute_logs