pulsar_cam_unified.py 7.53 KB
Newer Older
Christoph Lassner's avatar
Christoph Lassner committed
1
2
3
4
5
6
7
8
9
10
11
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
"""
This example demonstrates camera parameter optimization with the pulsar
PyTorch3D interface. For this, a reference image has been pre-generated
(you can find it at `../../tests/pulsar/reference/examples_TestRenderer_test_cam.png`).
The same scene parameterization is loaded and the camera parameters
distorted. Gradient-based optimization is used to converge towards the
original camera parameters.
Output: cam-pt3d.gif
"""
Christoph Lassner's avatar
Christoph Lassner committed
12
import logging
13
from os import path
Christoph Lassner's avatar
Christoph Lassner committed
14
15
16
17
18

import cv2
import imageio
import numpy as np
import torch
Christoph Lassner's avatar
Christoph Lassner committed
19
20
21

# Import `look_at_view_transform` as needed in the suggestion later in the
# example.
Christoph Lassner's avatar
Christoph Lassner committed
22
23
24
25
26
27
28
29
30
31
32
from pytorch3d.renderer.cameras import PerspectiveCameras  # , look_at_view_transform
from pytorch3d.renderer.points import (
    PointsRasterizationSettings,
    PointsRasterizer,
    PulsarPointsRenderer,
)
from pytorch3d.structures.pointclouds import Pointclouds
from pytorch3d.transforms import axis_angle_to_matrix
from torch import nn, optim


Christoph Lassner's avatar
Christoph Lassner committed
33
34
35
36
37
LOGGER = logging.getLogger(__name__)
N_POINTS = 20
WIDTH = 1_000
HEIGHT = 1_000
DEVICE = torch.device("cuda")
Christoph Lassner's avatar
Christoph Lassner committed
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57


class SceneModel(nn.Module):
    """
    A simple scene model to demonstrate use of pulsar in PyTorch modules.

    The scene model is parameterized with sphere locations (vert_pos),
    channel content (vert_col), radiuses (vert_rad), camera position (cam_pos),
    camera rotation (cam_rot) and sensor focal length and width (cam_sensor).

    The forward method of the model renders this scene description. Any
    of these parameters could instead be passed as inputs to the forward
    method and come from a different model.
    """

    def __init__(self):
        super(SceneModel, self).__init__()
        self.gamma = 0.1
        # Points.
        torch.manual_seed(1)
Christoph Lassner's avatar
Christoph Lassner committed
58
        vert_pos = torch.rand(N_POINTS, 3, dtype=torch.float32) * 10.0
Christoph Lassner's avatar
Christoph Lassner committed
59
60
61
62
63
64
        vert_pos[:, 2] += 25.0
        vert_pos[:, :2] -= 5.0
        self.register_parameter("vert_pos", nn.Parameter(vert_pos, requires_grad=False))
        self.register_parameter(
            "vert_col",
            nn.Parameter(
Christoph Lassner's avatar
Christoph Lassner committed
65
                torch.rand(N_POINTS, 3, dtype=torch.float32),
Christoph Lassner's avatar
Christoph Lassner committed
66
67
68
69
70
71
                requires_grad=False,
            ),
        )
        self.register_parameter(
            "vert_rad",
            nn.Parameter(
Christoph Lassner's avatar
Christoph Lassner committed
72
                torch.rand(N_POINTS, dtype=torch.float32),
Christoph Lassner's avatar
Christoph Lassner committed
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
                requires_grad=False,
            ),
        )
        self.register_parameter(
            "cam_pos",
            nn.Parameter(
                torch.tensor([0.1, 0.1, 0.0], dtype=torch.float32),
                requires_grad=True,
            ),
        )
        self.register_parameter(
            "cam_rot",
            # We're using the 6D rot. representation for better gradients.
            nn.Parameter(
                axis_angle_to_matrix(
                    torch.tensor(
                        [
                            [0.02, 0.02, 0.01],
                        ],
                        dtype=torch.float32,
                    )
                )[0],
                requires_grad=True,
            ),
        )
        self.register_parameter(
            "focal_length",
            nn.Parameter(
                torch.tensor(
                    [
                        4.8 * 2.0 / 2.0,
                    ],
                    dtype=torch.float32,
                ),
                requires_grad=True,
            ),
        )
        self.cameras = PerspectiveCameras(
            # The focal length must be double the size for PyTorch3D because of the NDC
            # coordinates spanning a range of two - and they must be normalized by the
            # sensor width (see the pulsar example). This means we need here
            # 5.0 * 2.0 / 2.0 to get the equivalent results as in pulsar.
            #
            # R, T and f are provided here, but will be provided again
            # at every call to the forward method. The reason are problems
            # with PyTorch which makes device placement for gradients problematic
            # for tensors which are themselves on a 'gradient path' but not
            # leafs in the calculation tree. This will be addressed by an architectural
            # change in PyTorch3D in the future. Until then, this workaround is
            # recommended.
            focal_length=self.focal_length,
            R=self.cam_rot[None, ...],
            T=self.cam_pos[None, ...],
Christoph Lassner's avatar
Christoph Lassner committed
126
127
            image_size=((WIDTH, HEIGHT),),
            device=DEVICE,
Christoph Lassner's avatar
Christoph Lassner committed
128
129
        )
        raster_settings = PointsRasterizationSettings(
Christoph Lassner's avatar
Christoph Lassner committed
130
            image_size=(WIDTH, HEIGHT),
Christoph Lassner's avatar
Christoph Lassner committed
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
            radius=self.vert_rad,
        )
        rasterizer = PointsRasterizer(
            cameras=self.cameras, raster_settings=raster_settings
        )
        self.renderer = PulsarPointsRenderer(rasterizer=rasterizer)

    def forward(self):
        # The Pointclouds object creates copies of it's arguments - that's why
        # we have to create a new object in every forward step.
        pcl = Pointclouds(
            points=self.vert_pos[None, ...], features=self.vert_col[None, ...]
        )
        return self.renderer(
            pcl,
            gamma=(self.gamma,),
            zfar=(45.0,),
            znear=(1.0,),
            radius_world=True,
Christoph Lassner's avatar
Christoph Lassner committed
150
            bg_col=torch.ones((3,), dtype=torch.float32, device=DEVICE),
Christoph Lassner's avatar
Christoph Lassner committed
151
152
153
154
155
156
157
158
            # As mentioned above: workaround for device placement of gradients for
            # camera parameters.
            focal_length=self.focal_length,
            R=self.cam_rot[None, ...],
            T=self.cam_pos[None, ...],
        )[0]


Christoph Lassner's avatar
Christoph Lassner committed
159
160
161
def cli():
    """
    Camera optimization example using pulsar.
Christoph Lassner's avatar
Christoph Lassner committed
162

Christoph Lassner's avatar
Christoph Lassner committed
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
    Writes to `cam.gif`.
    """
    LOGGER.info("Loading reference...")
    # Load reference.
    ref = (
        torch.from_numpy(
            imageio.imread(
                "../../tests/pulsar/reference/examples_TestRenderer_test_cam.png"
            )[:, ::-1, :].copy()
        ).to(torch.float32)
        / 255.0
    ).to(DEVICE)
    # Set up model.
    model = SceneModel().to(DEVICE)
    # Optimizer.
    optimizer = optim.SGD(
        [
            {"params": [model.cam_pos], "lr": 1e-4},
            {"params": [model.cam_rot], "lr": 5e-6},
            # Using a higher lr for the focal length here, because
            # the sensor width can not be optimized directly.
            {"params": [model.focal_length], "lr": 1e-3},
Christoph Lassner's avatar
Christoph Lassner committed
185
186
        ]
    )
Christoph Lassner's avatar
Christoph Lassner committed
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228

    LOGGER.info("Writing video to `%s`.", path.abspath("cam-pt3d.gif"))
    writer = imageio.get_writer("cam-pt3d.gif", format="gif", fps=25)

    # Optimize.
    for i in range(300):
        optimizer.zero_grad()
        result = model()
        # Visualize.
        result_im = (result.cpu().detach().numpy() * 255).astype(np.uint8)
        cv2.imshow("opt", result_im[:, :, ::-1])
        writer.append_data(result_im)
        overlay_img = np.ascontiguousarray(
            ((result * 0.5 + ref * 0.5).cpu().detach().numpy() * 255).astype(np.uint8)[
                :, :, ::-1
            ]
        )
        overlay_img = cv2.putText(
            overlay_img,
            "Step %d" % (i),
            (10, 40),
            cv2.FONT_HERSHEY_SIMPLEX,
            1,
            (0, 0, 0),
            2,
            cv2.LINE_AA,
            False,
        )
        cv2.imshow("overlay", overlay_img)
        cv2.waitKey(1)
        # Update.
        loss = ((result - ref) ** 2).sum()
        LOGGER.info("loss %d: %f", i, loss.item())
        loss.backward()
        optimizer.step()
    writer.close()
    LOGGER.info("Done.")


if __name__ == "__main__":
    logging.basicConfig(level=logging.INFO)
    cli()