test_marching_cubes.py 37.3 KB
Newer Older
1
# Copyright (c) Meta Platforms, Inc. and affiliates.
Patrick Labatut's avatar
Patrick Labatut committed
2
3
4
5
6
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

7
8
9
10
11
import os
import pickle
import unittest

import torch
12
from pytorch3d.ops.marching_cubes import marching_cubes, marching_cubes_naive
13

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
14
15
from .common_testing import get_tests_dir, TestCaseMixin

16
17

USE_SCIKIT = False
18
DATA_DIR = get_tests_dir() / "data"
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34


def convert_to_local(verts, volume_dim):
    return (2 * verts) / (volume_dim - 1) - 1


class TestCubeConfiguration(TestCaseMixin, unittest.TestCase):

    # Test single cubes. Each case corresponds to the corresponding
    # cube vertex configuration in each case here (0-indexed):
    # https://en.wikipedia.org/wiki/Marching_cubes#/media/File:MarchingCubes.svg

    def test_empty_volume(self):  # case 0
        volume_data = torch.ones(1, 2, 2, 2)  # (B, W, H, D)
        verts, faces = marching_cubes_naive(volume_data, return_local_coords=False)

35
36
        expected_verts = torch.tensor([[]])
        expected_faces = torch.tensor([[]], dtype=torch.int64)
37
38
39
        self.assertClose(verts, expected_verts)
        self.assertClose(faces, expected_faces)

40
41
42
43
        verts, faces = marching_cubes(volume_data, return_local_coords=False)
        self.assertClose(verts, expected_verts)
        self.assertClose(faces, expected_faces)

44
45
46
47
48
49
50
51
    def test_case1(self):  # case 1
        volume_data = torch.ones(1, 2, 2, 2)  # (B, W, H, D)
        volume_data[0, 0, 0, 0] = 0
        volume_data = volume_data.permute(0, 3, 2, 1)  # (B, D, H, W)
        expected_verts = torch.tensor(
            [
                [0.5, 0, 0],
                [0, 0.5, 0],
52
                [0, 0, 0.5],
53
54
            ]
        )
55
        expected_faces = torch.tensor([[0, 1, 2]])
Jiali Duan's avatar
Jiali Duan committed
56
57

        verts, faces = marching_cubes_naive(volume_data, return_local_coords=False)
58
59
60
        self.assertClose(verts[0], expected_verts)
        self.assertClose(faces[0], expected_faces)

61
62
63
64
        verts, faces = marching_cubes(volume_data, return_local_coords=False)
        self.assertClose(verts[0], expected_verts)
        self.assertClose(faces[0], expected_faces)

65
        expected_verts = convert_to_local(expected_verts, 2)
Jiali Duan's avatar
Jiali Duan committed
66
        verts, faces = marching_cubes_naive(volume_data, return_local_coords=True)
67
68
69
        self.assertClose(verts[0], expected_verts)
        self.assertClose(faces[0], expected_faces)

70
71
72
73
        verts, faces = marching_cubes(volume_data, return_local_coords=True)
        self.assertClose(verts[0], expected_verts)
        self.assertClose(faces[0], expected_faces)

74
75
76
77
78
79
80
81
82
    def test_case2(self):
        volume_data = torch.ones(1, 2, 2, 2)  # (B, W, H, D)
        volume_data[0, 0:2, 0, 0] = 0
        volume_data = volume_data.permute(0, 3, 2, 1)  # (B, D, H, W)
        verts, faces = marching_cubes_naive(volume_data, return_local_coords=False)

        expected_verts = torch.tensor(
            [
                [1.0000, 0.0000, 0.5000],
83
                [0.0000, 0.5000, 0.0000],
84
85
86
87
                [0.0000, 0.0000, 0.5000],
                [1.0000, 0.5000, 0.0000],
            ]
        )
88
        expected_faces = torch.tensor([[0, 1, 2], [3, 1, 0]])
89
90
91
        self.assertClose(verts[0], expected_verts)
        self.assertClose(faces[0], expected_faces)

92
93
94
95
        verts, faces = marching_cubes(volume_data, return_local_coords=False)
        self.assertClose(verts[0], expected_verts)
        self.assertClose(faces[0], expected_faces)

96
97
98
99
100
        verts, faces = marching_cubes_naive(volume_data, return_local_coords=True)
        expected_verts = convert_to_local(expected_verts, 2)
        self.assertClose(verts[0], expected_verts)
        self.assertClose(faces[0], expected_faces)

101
102
103
104
        verts, faces = marching_cubes(volume_data, return_local_coords=True)
        self.assertClose(verts[0], expected_verts)
        self.assertClose(faces[0], expected_faces)

105
106
107
108
109
110
111
112
113
    def test_case3(self):
        volume_data = torch.ones(1, 2, 2, 2)  # (B, W, H, D)
        volume_data[0, 0, 0, 0] = 0
        volume_data[0, 1, 1, 0] = 0
        volume_data = volume_data.permute(0, 3, 2, 1)  # (B, D, H, W)
        verts, faces = marching_cubes_naive(volume_data, return_local_coords=False)

        expected_verts = torch.tensor(
            [
114
                [1.0000, 0.5000, 0.0000],
115
116
                [1.0000, 1.0000, 0.5000],
                [0.5000, 1.0000, 0.0000],
117
                [0.5000, 0.0000, 0.0000],
118
                [0.0000, 0.5000, 0.0000],
119
                [0.0000, 0.0000, 0.5000],
120
121
            ]
        )
122
        expected_faces = torch.tensor([[0, 1, 2], [3, 4, 5]])
123
124
125
        self.assertClose(verts[0], expected_verts)
        self.assertClose(faces[0], expected_faces)

126
127
128
129
        verts, faces = marching_cubes(volume_data, return_local_coords=False)
        self.assertClose(verts[0], expected_verts)
        self.assertClose(faces[0], expected_faces)

130
131
132
133
134
        verts, faces = marching_cubes_naive(volume_data, return_local_coords=True)
        expected_verts = convert_to_local(expected_verts, 2)
        self.assertClose(verts[0], expected_verts)
        self.assertClose(faces[0], expected_faces)

135
136
137
138
        verts, faces = marching_cubes(volume_data, return_local_coords=True)
        self.assertClose(verts[0], expected_verts)
        self.assertClose(faces[0], expected_faces)

139
140
141
142
143
144
145
146
147
148
149
    def test_case4(self):
        volume_data = torch.ones(1, 2, 2, 2)  # (B, W, H, D)
        volume_data[0, 1, 0, 0] = 0
        volume_data[0, 1, 0, 1] = 0
        volume_data[0, 0, 0, 1] = 0
        volume_data = volume_data.permute(0, 3, 2, 1)  # (B, D, H, W)
        verts, faces = marching_cubes_naive(volume_data, return_local_coords=False)

        expected_verts = torch.tensor(
            [
                [0.0000, 0.0000, 0.5000],
150
151
                [1.0000, 0.5000, 0.0000],
                [0.5000, 0.0000, 0.0000],
152
153
154
155
                [0.0000, 0.5000, 1.0000],
                [1.0000, 0.5000, 1.0000],
            ]
        )
156
        expected_faces = torch.tensor([[0, 1, 2], [0, 3, 1], [3, 4, 1]])
157
158
159
        self.assertClose(verts[0], expected_verts)
        self.assertClose(faces[0], expected_faces)

160
161
162
163
        verts, faces = marching_cubes(volume_data, return_local_coords=False)
        self.assertClose(verts[0], expected_verts)
        self.assertClose(faces[0], expected_faces)

164
165
166
167
168
        verts, faces = marching_cubes_naive(volume_data, return_local_coords=True)
        expected_verts = convert_to_local(expected_verts, 2)
        self.assertClose(verts[0], expected_verts)
        self.assertClose(faces[0], expected_faces)

169
170
171
172
        verts, faces = marching_cubes(volume_data, return_local_coords=True)
        self.assertClose(verts[0], expected_verts)
        self.assertClose(faces[0], expected_faces)

173
174
175
176
177
178
179
180
181
182
    def test_case5(self):
        volume_data = torch.ones(1, 2, 2, 2)  # (B, W, H, D)
        volume_data[0, 0:2, 0, 0:2] = 0
        volume_data = volume_data.permute(0, 3, 2, 1)  # (B, D, H, W)
        verts, faces = marching_cubes_naive(volume_data, return_local_coords=False)

        expected_verts = torch.tensor(
            [
                [1.0000, 0.5000, 0.0000],
                [0.0000, 0.5000, 0.0000],
183
184
                [1.0000, 0.5000, 1.0000],
                [0.0000, 0.5000, 1.0000],
185
186
187
            ]
        )

188
        expected_faces = torch.tensor([[0, 1, 2], [2, 1, 3]])
189
190
191
        self.assertClose(verts[0], expected_verts)
        self.assertClose(faces[0], expected_faces)

192
193
194
195
        verts, faces = marching_cubes(volume_data, return_local_coords=False)
        self.assertClose(verts[0], expected_verts)
        self.assertClose(faces[0], expected_faces)

196
197
198
199
200
        verts, faces = marching_cubes_naive(volume_data, return_local_coords=True)
        expected_verts = convert_to_local(expected_verts, 2)
        self.assertClose(verts[0], expected_verts)
        self.assertClose(faces[0], expected_faces)

201
202
203
204
        verts, faces = marching_cubes(volume_data, return_local_coords=True)
        self.assertClose(verts[0], expected_verts)
        self.assertClose(faces[0], expected_faces)

205
206
207
208
209
210
211
212
213
214
215
216
217
    def test_case6(self):
        volume_data = torch.ones(1, 2, 2, 2)  # (B, W, H, D)
        volume_data[0, 1, 0, 0] = 0
        volume_data[0, 1, 0, 1] = 0
        volume_data[0, 0, 0, 1] = 0
        volume_data[0, 0, 1, 0] = 0
        volume_data = volume_data.permute(0, 3, 2, 1)  # (B, D, H, W)
        verts, faces = marching_cubes_naive(volume_data, return_local_coords=False)

        expected_verts = torch.tensor(
            [
                [0.5000, 1.0000, 0.0000],
                [0.0000, 1.0000, 0.5000],
218
219
220
                [0.0000, 0.5000, 0.0000],
                [1.0000, 0.5000, 0.0000],
                [0.5000, 0.0000, 0.0000],
221
222
                [0.0000, 0.5000, 1.0000],
                [1.0000, 0.5000, 1.0000],
223
                [0.0000, 0.0000, 0.5000],
224
225
            ]
        )
226
        expected_faces = torch.tensor([[0, 1, 2], [3, 4, 5], [3, 5, 6], [5, 4, 7]])
227
228
229
230

        self.assertClose(verts[0], expected_verts)
        self.assertClose(faces[0], expected_faces)

231
232
233
234
        verts, faces = marching_cubes(volume_data, return_local_coords=False)
        self.assertClose(verts[0], expected_verts)
        self.assertClose(faces[0], expected_faces)

235
236
237
238
239
        verts, faces = marching_cubes_naive(volume_data, return_local_coords=True)
        expected_verts = convert_to_local(expected_verts, 2)
        self.assertClose(verts[0], expected_verts)
        self.assertClose(faces[0], expected_faces)

240
241
242
243
        verts, faces = marching_cubes(volume_data, return_local_coords=True)
        self.assertClose(verts[0], expected_verts)
        self.assertClose(faces[0], expected_faces)

244
245
246
247
248
249
250
251
252
253
254
    def test_case7(self):
        volume_data = torch.ones(1, 2, 2, 2)  # (B, W, H, D)
        volume_data[0, 0, 0, 0] = 0
        volume_data[0, 1, 0, 1] = 0
        volume_data[0, 1, 1, 0] = 0
        volume_data[0, 0, 1, 1] = 0
        volume_data = volume_data.permute(0, 3, 2, 1)  # (B, D, H, W)
        verts, faces = marching_cubes_naive(volume_data, return_local_coords=False)

        expected_verts = torch.tensor(
            [
255
256
257
                [0.5000, 1.0000, 1.0000],
                [0.0000, 0.5000, 1.0000],
                [0.0000, 1.0000, 0.5000],
258
                [1.0000, 0.0000, 0.5000],
259
260
                [0.5000, 0.0000, 1.0000],
                [1.0000, 0.5000, 1.0000],
261
                [0.5000, 0.0000, 0.0000],
262
                [0.0000, 0.5000, 0.0000],
263
264
265
                [0.0000, 0.0000, 0.5000],
                [0.5000, 1.0000, 0.0000],
                [1.0000, 0.5000, 0.0000],
266
                [1.0000, 1.0000, 0.5000],
267
268
269
            ]
        )

270
        expected_faces = torch.tensor([[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11]])
271
272
273
274

        self.assertClose(verts[0], expected_verts)
        self.assertClose(faces[0], expected_faces)

275
276
277
278
        verts, faces = marching_cubes(volume_data, return_local_coords=False)
        self.assertClose(verts[0], expected_verts)
        self.assertClose(faces[0], expected_faces)

279
280
281
282
283
        verts, faces = marching_cubes_naive(volume_data, return_local_coords=True)
        expected_verts = convert_to_local(expected_verts, 2)
        self.assertClose(verts[0], expected_verts)
        self.assertClose(faces[0], expected_faces)

284
285
286
287
        verts, faces = marching_cubes(volume_data, return_local_coords=True)
        self.assertClose(verts[0], expected_verts)
        self.assertClose(faces[0], expected_faces)

288
289
290
291
292
293
294
295
296
297
298
299
    def test_case8(self):
        volume_data = torch.ones(1, 2, 2, 2)  # (B, W, H, D)
        volume_data[0, 0, 0, 0] = 0
        volume_data[0, 0, 0, 1] = 0
        volume_data[0, 1, 0, 1] = 0
        volume_data[0, 0, 1, 1] = 0
        volume_data = volume_data.permute(0, 3, 2, 1)  # (B, D, H, W)
        verts, faces = marching_cubes_naive(volume_data, return_local_coords=False)

        expected_verts = torch.tensor(
            [
                [1.0000, 0.5000, 1.0000],
300
301
302
                [0.0000, 1.0000, 0.5000],
                [0.5000, 1.0000, 1.0000],
                [1.0000, 0.0000, 0.5000],
303
                [0.0000, 0.5000, 0.0000],
304
                [0.5000, 0.0000, 0.0000],
305
306
            ]
        )
307
        expected_faces = torch.tensor([[0, 1, 2], [3, 1, 0], [3, 4, 1], [3, 5, 4]])
308
309
310
311

        self.assertClose(verts[0], expected_verts)
        self.assertClose(faces[0], expected_faces)

312
313
314
315
        verts, faces = marching_cubes(volume_data, return_local_coords=False)
        self.assertClose(verts[0], expected_verts)
        self.assertClose(faces[0], expected_faces)

316
317
318
319
320
        verts, faces = marching_cubes_naive(volume_data, return_local_coords=True)
        expected_verts = convert_to_local(expected_verts, 2)
        self.assertClose(verts[0], expected_verts)
        self.assertClose(faces[0], expected_faces)

321
322
323
324
        verts, faces = marching_cubes(volume_data, return_local_coords=True)
        self.assertClose(verts[0], expected_verts)
        self.assertClose(faces[0], expected_faces)

325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
    def test_case9(self):
        volume_data = torch.ones(1, 2, 2, 2)  # (B, W, H, D)
        volume_data[0, 1, 0, 0] = 0
        volume_data[0, 0, 0, 1] = 0
        volume_data[0, 1, 0, 1] = 0
        volume_data[0, 0, 1, 1] = 0
        volume_data = volume_data.permute(0, 3, 2, 1)  # (B, D, H, W)
        verts, faces = marching_cubes_naive(volume_data, return_local_coords=False)

        expected_verts = torch.tensor(
            [
                [0.5000, 0.0000, 0.0000],
                [0.0000, 0.0000, 0.5000],
                [0.0000, 1.0000, 0.5000],
                [1.0000, 0.5000, 1.0000],
                [1.0000, 0.5000, 0.0000],
341
                [0.5000, 1.0000, 1.0000],
342
343
            ]
        )
344
        expected_faces = torch.tensor([[0, 1, 2], [0, 2, 3], [0, 3, 4], [5, 3, 2]])
345
346
347
348

        self.assertClose(verts[0], expected_verts)
        self.assertClose(faces[0], expected_faces)

349
350
351
352
        verts, faces = marching_cubes(volume_data, return_local_coords=False)
        self.assertClose(verts[0], expected_verts)
        self.assertClose(faces[0], expected_faces)

353
354
355
356
357
        verts, faces = marching_cubes_naive(volume_data, return_local_coords=True)
        expected_verts = convert_to_local(expected_verts, 2)
        self.assertClose(verts[0], expected_verts)
        self.assertClose(faces[0], expected_faces)

358
359
360
361
        verts, faces = marching_cubes(volume_data, return_local_coords=True)
        self.assertClose(verts[0], expected_verts)
        self.assertClose(faces[0], expected_faces)

362
363
364
365
366
367
368
369
370
371
    def test_case10(self):
        volume_data = torch.ones(1, 2, 2, 2)  # (B, W, H, D)
        volume_data[0, 0, 0, 0] = 0
        volume_data[0, 1, 1, 1] = 0
        volume_data = volume_data.permute(0, 3, 2, 1)  # (B, D, H, W)
        verts, faces = marching_cubes_naive(volume_data, return_local_coords=False)

        expected_verts = torch.tensor(
            [
                [0.5000, 0.0000, 0.0000],
372
                [0.0000, 0.5000, 0.0000],
373
374
375
                [0.0000, 0.0000, 0.5000],
                [1.0000, 1.0000, 0.5000],
                [1.0000, 0.5000, 1.0000],
376
                [0.5000, 1.0000, 1.0000],
377
378
379
            ]
        )

380
        expected_faces = torch.tensor([[0, 1, 2], [3, 4, 5]])
381
382
383
384

        self.assertClose(verts[0], expected_verts)
        self.assertClose(faces[0], expected_faces)

385
386
387
388
        verts, faces = marching_cubes(volume_data, return_local_coords=False)
        self.assertClose(verts[0], expected_verts)
        self.assertClose(faces[0], expected_faces)

389
390
391
392
393
        verts, faces = marching_cubes_naive(volume_data, return_local_coords=True)
        expected_verts = convert_to_local(expected_verts, 2)
        self.assertClose(verts[0], expected_verts)
        self.assertClose(faces[0], expected_faces)

394
395
396
397
        verts, faces = marching_cubes(volume_data, return_local_coords=True)
        self.assertClose(verts[0], expected_verts)
        self.assertClose(faces[0], expected_faces)

398
399
400
401
402
403
404
405
406
407
408
    def test_case11(self):
        volume_data = torch.ones(1, 2, 2, 2)  # (B, W, H, D)
        volume_data[0, 0, 0, 0] = 0
        volume_data[0, 1, 0, 0] = 0
        volume_data[0, 1, 1, 1] = 0
        volume_data = volume_data.permute(0, 3, 2, 1)  # (B, D, H, W)
        verts, faces = marching_cubes_naive(volume_data, return_local_coords=False)

        expected_verts = torch.tensor(
            [
                [1.0000, 0.0000, 0.5000],
409
                [0.0000, 0.5000, 0.0000],
410
                [0.0000, 0.0000, 0.5000],
411
                [1.0000, 0.5000, 0.0000],
412
413
                [1.0000, 1.0000, 0.5000],
                [1.0000, 0.5000, 1.0000],
414
                [0.5000, 1.0000, 1.0000],
415
416
417
            ]
        )

418
        expected_faces = torch.tensor([[0, 1, 2], [0, 3, 1], [4, 5, 6]])
419
420
421
422

        self.assertClose(verts[0], expected_verts)
        self.assertClose(faces[0], expected_faces)

423
424
425
426
        verts, faces = marching_cubes(volume_data, return_local_coords=False)
        self.assertClose(verts[0], expected_verts)
        self.assertClose(faces[0], expected_faces)

427
428
429
430
431
        verts, faces = marching_cubes_naive(volume_data, return_local_coords=True)
        expected_verts = convert_to_local(expected_verts, 2)
        self.assertClose(verts[0], expected_verts)
        self.assertClose(faces[0], expected_faces)

432
433
434
435
        verts, faces = marching_cubes(volume_data, return_local_coords=True)
        self.assertClose(verts[0], expected_verts)
        self.assertClose(faces[0], expected_faces)

436
437
438
439
440
441
442
443
444
445
446
    def test_case12(self):
        volume_data = torch.ones(1, 2, 2, 2)  # (B, W, H, D)
        volume_data[0, 1, 0, 0] = 0
        volume_data[0, 0, 1, 0] = 0
        volume_data[0, 1, 1, 1] = 0
        volume_data = volume_data.permute(0, 3, 2, 1)  # (B, D, H, W)
        verts, faces = marching_cubes_naive(volume_data, return_local_coords=False)

        expected_verts = torch.tensor(
            [
                [1.0000, 0.0000, 0.5000],
447
                [1.0000, 0.5000, 0.0000],
448
449
450
                [0.5000, 0.0000, 0.0000],
                [1.0000, 1.0000, 0.5000],
                [1.0000, 0.5000, 1.0000],
451
                [0.5000, 1.0000, 1.0000],
452
                [0.0000, 0.5000, 0.0000],
453
454
                [0.5000, 1.0000, 0.0000],
                [0.0000, 1.0000, 0.5000],
455
456
457
            ]
        )

458
        expected_faces = torch.tensor([[0, 1, 2], [3, 4, 5], [6, 7, 8]])
459
460
461
462

        self.assertClose(verts[0], expected_verts)
        self.assertClose(faces[0], expected_faces)

463
464
465
466
        verts, faces = marching_cubes(volume_data, return_local_coords=False)
        self.assertClose(verts[0], expected_verts)
        self.assertClose(faces[0], expected_faces)

467
468
469
470
471
        verts, faces = marching_cubes_naive(volume_data, return_local_coords=True)
        expected_verts = convert_to_local(expected_verts, 2)
        self.assertClose(verts[0], expected_verts)
        self.assertClose(faces[0], expected_faces)

472
473
474
475
        verts, faces = marching_cubes(volume_data, return_local_coords=True)
        self.assertClose(verts[0], expected_verts)
        self.assertClose(faces[0], expected_faces)

476
477
478
479
480
481
482
483
484
485
486
487
    def test_case13(self):
        volume_data = torch.ones(1, 2, 2, 2)  # (B, W, H, D)
        volume_data[0, 0, 0, 0] = 0
        volume_data[0, 0, 1, 0] = 0
        volume_data[0, 1, 0, 1] = 0
        volume_data[0, 1, 1, 1] = 0
        volume_data = volume_data.permute(0, 3, 2, 1)  # (B, D, H, W)
        verts, faces = marching_cubes_naive(volume_data, return_local_coords=False)

        expected_verts = torch.tensor(
            [
                [1.0000, 0.0000, 0.5000],
488
                [0.5000, 0.0000, 1.0000],
489
                [1.0000, 1.0000, 0.5000],
490
491
492
                [0.5000, 1.0000, 1.0000],
                [0.0000, 0.0000, 0.5000],
                [0.5000, 0.0000, 0.0000],
493
494
495
496
497
                [0.5000, 1.0000, 0.0000],
                [0.0000, 1.0000, 0.5000],
            ]
        )

498
        expected_faces = torch.tensor([[0, 1, 2], [2, 1, 3], [4, 5, 6], [4, 6, 7]])
499
500
501
502

        self.assertClose(verts[0], expected_verts)
        self.assertClose(faces[0], expected_faces)

503
504
505
506
        verts, faces = marching_cubes(volume_data, return_local_coords=False)
        self.assertClose(verts[0], expected_verts)
        self.assertClose(faces[0], expected_faces)

507
508
509
510
511
        verts, faces = marching_cubes_naive(volume_data, return_local_coords=True)
        expected_verts = convert_to_local(expected_verts, 2)
        self.assertClose(verts[0], expected_verts)
        self.assertClose(faces[0], expected_faces)

512
513
514
515
        verts, faces = marching_cubes(volume_data, return_local_coords=True)
        self.assertClose(verts[0], expected_verts)
        self.assertClose(faces[0], expected_faces)

516
517
518
519
520
521
522
523
524
525
526
527
528
    def test_case14(self):
        volume_data = torch.ones(1, 2, 2, 2)  # (B, W, H, D)
        volume_data[0, 0, 0, 0] = 0
        volume_data[0, 0, 0, 1] = 0
        volume_data[0, 1, 0, 1] = 0
        volume_data[0, 1, 1, 1] = 0
        volume_data = volume_data.permute(0, 3, 2, 1)  # (B, D, H, W)
        verts, faces = marching_cubes_naive(volume_data, return_local_coords=False)

        expected_verts = torch.tensor(
            [
                [0.5000, 0.0000, 0.0000],
                [0.0000, 0.5000, 0.0000],
529
530
531
532
                [0.0000, 0.5000, 1.0000],
                [1.0000, 1.0000, 0.5000],
                [1.0000, 0.0000, 0.5000],
                [0.5000, 1.0000, 1.0000],
533
534
535
            ]
        )

536
        expected_faces = torch.tensor([[0, 1, 2], [0, 2, 3], [0, 3, 4], [3, 2, 5]])
537
538
539
540

        self.assertClose(verts[0], expected_verts)
        self.assertClose(faces[0], expected_faces)

541
542
543
544
        verts, faces = marching_cubes(volume_data, return_local_coords=False)
        self.assertClose(verts[0], expected_verts)
        self.assertClose(faces[0], expected_faces)

545
546
547
548
549
        verts, faces = marching_cubes_naive(volume_data, return_local_coords=True)
        expected_verts = convert_to_local(expected_verts, 2)
        self.assertClose(verts[0], expected_verts)
        self.assertClose(faces[0], expected_faces)

550
551
552
553
        verts, faces = marching_cubes(volume_data, return_local_coords=True)
        self.assertClose(verts[0], expected_verts)
        self.assertClose(faces[0], expected_faces)

554
555
556
557
558
559
560
561
562
563

class TestMarchingCubes(TestCaseMixin, unittest.TestCase):
    def test_single_point(self):
        volume_data = torch.zeros(1, 3, 3, 3)  # (B, W, H, D)
        volume_data[0, 1, 1, 1] = 1
        volume_data = volume_data.permute(0, 3, 2, 1)  # (B, D, H, W)
        verts, faces = marching_cubes_naive(volume_data, return_local_coords=False)

        expected_verts = torch.tensor(
            [
564
565
566
567
568
569
                [1.0000, 0.5000, 1.0000],
                [1.0000, 1.0000, 0.5000],
                [0.5000, 1.0000, 1.0000],
                [1.5000, 1.0000, 1.0000],
                [1.0000, 1.5000, 1.0000],
                [1.0000, 1.0000, 1.5000],
570
571
572
573
            ]
        )
        expected_faces = torch.tensor(
            [
574
575
576
577
578
579
580
                [0, 1, 2],
                [1, 0, 3],
                [1, 4, 2],
                [1, 3, 4],
                [0, 2, 5],
                [3, 0, 5],
                [2, 4, 5],
581
582
583
584
585
586
                [3, 5, 4],
            ]
        )
        self.assertClose(verts[0], expected_verts)
        self.assertClose(faces[0], expected_faces)

587
588
589
590
        verts, faces = marching_cubes(volume_data, return_local_coords=False)
        self.assertClose(verts[0], expected_verts)
        self.assertClose(faces[0], expected_faces)

591
592
593
594
595
596
        verts, faces = marching_cubes_naive(volume_data, return_local_coords=True)
        expected_verts = convert_to_local(expected_verts, 3)
        self.assertClose(verts[0], expected_verts)
        self.assertClose(faces[0], expected_faces)
        self.assertTrue(verts[0].ge(-1).all() and verts[0].le(1).all())

597
598
599
600
601
        verts, faces = marching_cubes(volume_data, return_local_coords=True)
        self.assertClose(verts[0], expected_verts)
        self.assertClose(faces[0], expected_faces)
        self.assertTrue(verts[0].ge(-1).all() and verts[0].le(1).all())

602
603
604
605
606
607
608
609
610
611
612
613
614
615
    def test_cube(self):
        volume_data = torch.zeros(1, 5, 5, 5)  # (B, W, H, D)
        volume_data[0, 1, 1, 1] = 1
        volume_data[0, 1, 1, 2] = 1
        volume_data[0, 2, 1, 1] = 1
        volume_data[0, 2, 1, 2] = 1
        volume_data[0, 1, 2, 1] = 1
        volume_data[0, 1, 2, 2] = 1
        volume_data[0, 2, 2, 1] = 1
        volume_data[0, 2, 2, 2] = 1
        volume_data = volume_data.permute(0, 3, 2, 1)  # (B, D, H, W)
        expected_verts = torch.tensor(
            [
                [1.0000, 0.9000, 1.0000],
616
617
                [1.0000, 1.0000, 0.9000],
                [0.9000, 1.0000, 1.0000],
618
                [2.0000, 0.9000, 1.0000],
619
620
621
622
                [2.0000, 1.0000, 0.9000],
                [2.1000, 1.0000, 1.0000],
                [1.0000, 2.0000, 0.9000],
                [0.9000, 2.0000, 1.0000],
623
                [2.0000, 2.0000, 0.9000],
624
625
                [2.1000, 2.0000, 1.0000],
                [1.0000, 2.1000, 1.0000],
626
                [2.0000, 2.1000, 1.0000],
627
628
629
                [1.0000, 0.9000, 2.0000],
                [0.9000, 1.0000, 2.0000],
                [2.0000, 0.9000, 2.0000],
630
                [2.1000, 1.0000, 2.0000],
631
                [0.9000, 2.0000, 2.0000],
632
                [2.1000, 2.0000, 2.0000],
633
634
635
636
637
638
                [1.0000, 2.1000, 2.0000],
                [2.0000, 2.1000, 2.0000],
                [1.0000, 1.0000, 2.1000],
                [2.0000, 1.0000, 2.1000],
                [1.0000, 2.0000, 2.1000],
                [2.0000, 2.0000, 2.1000],
639
640
641
642
643
            ]
        )

        expected_faces = torch.tensor(
            [
644
645
646
647
648
649
650
651
652
653
                [0, 1, 2],
                [0, 3, 4],
                [1, 0, 4],
                [4, 3, 5],
                [1, 6, 7],
                [2, 1, 7],
                [4, 8, 1],
                [1, 8, 6],
                [8, 4, 5],
                [9, 8, 5],
654
                [6, 10, 7],
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
                [6, 8, 11],
                [10, 6, 11],
                [8, 9, 11],
                [12, 0, 2],
                [13, 12, 2],
                [3, 0, 14],
                [14, 0, 12],
                [15, 5, 3],
                [14, 15, 3],
                [2, 7, 13],
                [7, 16, 13],
                [5, 15, 9],
                [9, 15, 17],
                [10, 18, 16],
                [7, 10, 16],
                [11, 19, 10],
                [19, 18, 10],
672
673
                [9, 17, 19],
                [11, 9, 19],
674
675
676
                [12, 13, 20],
                [14, 12, 20],
                [21, 14, 20],
677
                [15, 14, 21],
678
679
                [13, 16, 22],
                [20, 13, 22],
680
                [21, 20, 23],
681
                [20, 22, 23],
682
683
                [17, 15, 21],
                [23, 17, 21],
684
                [16, 18, 22],
685
686
687
688
689
                [23, 22, 18],
                [19, 23, 18],
                [17, 23, 19],
            ]
        )
Jiali Duan's avatar
Jiali Duan committed
690
        verts, faces = marching_cubes_naive(volume_data, 0.9, return_local_coords=False)
691
692
        self.assertClose(verts[0], expected_verts)
        self.assertClose(faces[0], expected_faces)
693

694
        verts, faces = marching_cubes(volume_data, 0.9, return_local_coords=False)
Jiali Duan's avatar
Jiali Duan committed
695
696
        verts2, faces2 = marching_cubes(volume_data, 0.9, return_local_coords=False)

697
698
699
        self.assertClose(verts[0], expected_verts)
        self.assertClose(faces[0], expected_faces)

700
701
702
703
704
705
706
707
        verts, faces = marching_cubes_naive(volume_data, 0.9, return_local_coords=True)
        expected_verts = convert_to_local(expected_verts, 5)
        self.assertClose(verts[0], expected_verts)
        self.assertClose(faces[0], expected_faces)

        # Check all values are in the range [-1, 1]
        self.assertTrue(verts[0].ge(-1).all() and verts[0].le(1).all())

708
709
710
711
712
        verts, faces = marching_cubes(volume_data, 0.9, return_local_coords=True)
        self.assertClose(verts[0], expected_verts)
        self.assertClose(faces[0], expected_faces)
        self.assertTrue(verts[0].ge(-1).all() and verts[0].le(1).all())

713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
    def test_cube_no_duplicate_verts(self):
        volume_data = torch.zeros(1, 5, 5, 5)  # (B, W, H, D)
        volume_data[0, 1, 1, 1] = 1
        volume_data[0, 1, 1, 2] = 1
        volume_data[0, 2, 1, 1] = 1
        volume_data[0, 2, 1, 2] = 1
        volume_data[0, 1, 2, 1] = 1
        volume_data[0, 1, 2, 2] = 1
        volume_data[0, 2, 2, 1] = 1
        volume_data[0, 2, 2, 2] = 1
        volume_data = volume_data.permute(0, 3, 2, 1)  # (B, D, H, W)
        verts, faces = marching_cubes_naive(volume_data, 1, return_local_coords=False)

        expected_verts = torch.tensor(
            [
728
729
730
731
732
                [2.0, 1.0, 1.0],
                [2.0, 2.0, 1.0],
                [1.0, 1.0, 1.0],
                [1.0, 2.0, 1.0],
                [2.0, 1.0, 1.0],
733
                [1.0, 1.0, 1.0],
734
                [2.0, 1.0, 2.0],
735
                [1.0, 1.0, 2.0],
736
                [1.0, 1.0, 1.0],
737
                [1.0, 2.0, 1.0],
738
                [1.0, 1.0, 2.0],
739
740
741
742
743
                [1.0, 2.0, 2.0],
                [2.0, 1.0, 1.0],
                [2.0, 1.0, 2.0],
                [2.0, 2.0, 1.0],
                [2.0, 2.0, 2.0],
744
745
746
747
748
749
750
751
                [2.0, 2.0, 1.0],
                [2.0, 2.0, 2.0],
                [1.0, 2.0, 1.0],
                [1.0, 2.0, 2.0],
                [2.0, 1.0, 2.0],
                [1.0, 1.0, 2.0],
                [2.0, 2.0, 2.0],
                [1.0, 2.0, 2.0],
752
753
754
755
756
            ]
        )

        expected_faces = torch.tensor(
            [
757
758
759
760
761
762
763
764
765
766
767
768
                [0, 1, 2],
                [2, 1, 3],
                [4, 5, 6],
                [6, 5, 7],
                [8, 9, 10],
                [9, 11, 10],
                [12, 13, 14],
                [14, 13, 15],
                [16, 17, 18],
                [17, 19, 18],
                [20, 21, 22],
                [21, 23, 22],
769
770
771
772
773
            ]
        )
        self.assertClose(verts[0], expected_verts)
        self.assertClose(faces[0], expected_faces)

Jiali Duan's avatar
Jiali Duan committed
774
775
776
777
        verts, faces = marching_cubes(volume_data, 1, return_local_coords=False)
        self.assertClose(verts[0], expected_verts)
        self.assertClose(faces[0], expected_faces)

778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
        verts, faces = marching_cubes_naive(volume_data, 1, return_local_coords=True)
        expected_verts = convert_to_local(expected_verts, 5)
        self.assertClose(verts[0], expected_verts)
        self.assertClose(faces[0], expected_faces)
        self.assertTrue(verts[0].ge(-1).all() and verts[0].le(1).all())

    def test_sphere(self):
        # (B, W, H, D)
        volume = torch.Tensor(
            [
                [
                    [(x - 10) ** 2 + (y - 10) ** 2 + (z - 10) ** 2 for z in range(20)]
                    for y in range(20)
                ]
                for x in range(20)
            ]
        ).unsqueeze(0)
        volume = volume.permute(0, 3, 2, 1)  # (B, D, H, W)
        verts, faces = marching_cubes_naive(
            volume, isolevel=64, return_local_coords=False
        )

        data_filename = "test_marching_cubes_data/sphere_level64.pickle"
        filename = os.path.join(DATA_DIR, data_filename)
        with open(filename, "rb") as file:
            verts_and_faces = pickle.load(file)
804
805
        expected_verts = verts_and_faces["verts"]
        expected_faces = verts_and_faces["faces"]
806
807
808
809

        self.assertClose(verts[0], expected_verts)
        self.assertClose(faces[0], expected_faces)

810
811
812
813
        verts, faces = marching_cubes(volume, 64, return_local_coords=False)
        self.assertClose(verts[0], expected_verts)
        self.assertClose(faces[0], expected_faces)

814
815
816
817
818
819
820
821
822
823
824
        verts, faces = marching_cubes_naive(
            volume, isolevel=64, return_local_coords=True
        )

        expected_verts = convert_to_local(expected_verts, 20)
        self.assertClose(verts[0], expected_verts)
        self.assertClose(faces[0], expected_faces)

        # Check all values are in the range [-1, 1]
        self.assertTrue(verts[0].ge(-1).all() and verts[0].le(1).all())

825
826
827
828
829
        verts, faces = marching_cubes(volume, 64, return_local_coords=True)
        self.assertClose(verts[0], expected_verts)
        self.assertClose(faces[0], expected_faces)
        self.assertTrue(verts[0].ge(-1).all() and verts[0].le(1).all())

830
831
832
833
834
835
836
837
838
839
840
841
842
    # Uses skimage.draw.ellipsoid
    def test_double_ellipsoid(self):
        if USE_SCIKIT:
            import numpy as np
            from skimage.draw import ellipsoid

            ellip_base = ellipsoid(6, 10, 16, levelset=True)
            ellip_double = np.concatenate(
                (ellip_base[:-1, ...], ellip_base[2:, ...]), axis=0
            )
            volume = torch.Tensor(ellip_double).unsqueeze(0)
            volume = volume.permute(0, 3, 2, 1)  # (B, D, H, W)
            verts, faces = marching_cubes_naive(volume, isolevel=0.001)
843
            verts2, faces2 = marching_cubes(volume, isolevel=0.001)
844
845
846
847
848
849
850
851

            data_filename = "test_marching_cubes_data/double_ellipsoid.pickle"
            filename = os.path.join(DATA_DIR, data_filename)
            with open(filename, "rb") as file:
                verts_and_faces = pickle.load(file)
            expected_verts = verts_and_faces["verts"]
            expected_faces = verts_and_faces["faces"]

852
853
            self.assertClose(verts[0], expected_verts)
            self.assertClose(faces[0], expected_faces)
854
855
            self.assertClose(verts2[0], expected_verts)
            self.assertClose(faces2[0], expected_faces)
856

Ada Martin's avatar
Ada Martin committed
857
858
859
860
861
862
863
864
865
866
867
868
    def test_single_large_ellipsoid(self):
        if USE_SCIKIT:
            from skimage.draw import ellipsoid

            ellip_base = ellipsoid(50, 60, 16, levelset=True)
            volume = torch.Tensor(ellip_base).unsqueeze(0).cpu()
            verts, faces = marching_cubes_naive(volume, 0)
            verts2, faces2 = marching_cubes(volume, 0)

            self.assertClose(verts[0], verts2[0], atol=1e-6)
            self.assertClose(faces[0], faces2[0], atol=1e-6)

869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
    def test_cube_surface_area(self):
        if USE_SCIKIT:
            from skimage.measure import marching_cubes_classic, mesh_surface_area

            volume_data = torch.zeros(1, 5, 5, 5)
            volume_data[0, 1, 1, 1] = 1
            volume_data[0, 1, 1, 2] = 1
            volume_data[0, 2, 1, 1] = 1
            volume_data[0, 2, 1, 2] = 1
            volume_data[0, 1, 2, 1] = 1
            volume_data[0, 1, 2, 2] = 1
            volume_data[0, 2, 2, 1] = 1
            volume_data[0, 2, 2, 2] = 1
            volume_data = volume_data.permute(0, 3, 2, 1)  # (B, D, H, W)
            verts, faces = marching_cubes_naive(volume_data, return_local_coords=False)
884
            verts_c, faces_c = marching_cubes(volume_data, return_local_coords=False)
885
886
887
            verts_sci, faces_sci = marching_cubes_classic(volume_data[0])

            surf = mesh_surface_area(verts[0], faces[0])
888
            surf_c = mesh_surface_area(verts_c[0], faces_c[0])
889
890
891
            surf_sci = mesh_surface_area(verts_sci, faces_sci)

            self.assertClose(surf, surf_sci)
892
            self.assertClose(surf, surf_c)
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912

    def test_sphere_surface_area(self):
        if USE_SCIKIT:
            from skimage.measure import marching_cubes_classic, mesh_surface_area

            # (B, W, H, D)
            volume = torch.Tensor(
                [
                    [
                        [
                            (x - 10) ** 2 + (y - 10) ** 2 + (z - 10) ** 2
                            for z in range(20)
                        ]
                        for y in range(20)
                    ]
                    for x in range(20)
                ]
            ).unsqueeze(0)
            volume = volume.permute(0, 3, 2, 1)  # (B, D, H, W)
            verts, faces = marching_cubes_naive(volume, isolevel=64)
913
            verts_c, faces_c = marching_cubes(volume, isolevel=64)
914
915
916
            verts_sci, faces_sci = marching_cubes_classic(volume[0], level=64)

            surf = mesh_surface_area(verts[0], faces[0])
917
            surf_c = mesh_surface_area(verts_c[0], faces_c[0])
918
919
920
            surf_sci = mesh_surface_area(verts_sci, faces_sci)

            self.assertClose(surf, surf_sci)
921
            self.assertClose(surf, surf_c)
922
923
924
925
926
927
928
929
930
931
932
933
934
935

    def test_double_ellipsoid_surface_area(self):
        if USE_SCIKIT:
            import numpy as np
            from skimage.draw import ellipsoid
            from skimage.measure import marching_cubes_classic, mesh_surface_area

            ellip_base = ellipsoid(6, 10, 16, levelset=True)
            ellip_double = np.concatenate(
                (ellip_base[:-1, ...], ellip_base[2:, ...]), axis=0
            )
            volume = torch.Tensor(ellip_double).unsqueeze(0)
            volume = volume.permute(0, 3, 2, 1)  # (B, D, H, W)
            verts, faces = marching_cubes_naive(volume, isolevel=0)
936
            verts_c, faces_c = marching_cubes(volume, isolevel=0)
937
938
939
            verts_sci, faces_sci = marching_cubes_classic(volume[0], level=0)

            surf = mesh_surface_area(verts[0], faces[0])
940
            surf_c = mesh_surface_area(verts_c[0], faces_c[0])
941
942
943
            surf_sci = mesh_surface_area(verts_sci, faces_sci)

            self.assertClose(surf, surf_sci)
944
            self.assertClose(surf, surf_c)
945

946
    def test_ball_example(self):
Jiali Duan's avatar
Jiali Duan committed
947
        N = 30
948
949
950
951
952
        axis_tensor = torch.arange(0, N)
        X, Y, Z = torch.meshgrid(axis_tensor, axis_tensor, axis_tensor, indexing="ij")
        u = (X - 15) ** 2 + (Y - 15) ** 2 + (Z - 15) ** 2 - 8**2
        u = u[None].float()
        verts, faces = marching_cubes_naive(u, 0, return_local_coords=False)
953
        verts2, faces2 = marching_cubes(u, 0, return_local_coords=False)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
954
955
956
957
958
        self.assertClose(verts2[0], verts[0])
        self.assertClose(faces2[0], faces[0])
        verts3, faces3 = marching_cubes(u.cuda(), 0, return_local_coords=False)
        self.assertEqual(len(verts3), len(verts))
        self.assertEqual(len(faces3), len(faces))
959

960
    @staticmethod
Jiali Duan's avatar
Jiali Duan committed
961
962
    def marching_cubes_with_init(algo_type: str, batch_size: int, V: int, device: str):
        device = torch.device(device)
963
964
965
        volume_data = torch.rand(
            (batch_size, V, V, V), dtype=torch.float32, device=device
        )
966
967
        algo_table = {
            "naive": marching_cubes_naive,
Jiali Duan's avatar
Jiali Duan committed
968
            "extension": marching_cubes,
969
        }
970
971

        def convert():
972
            algo_table[algo_type](volume_data, return_local_coords=False)
973
974
975
            torch.cuda.synchronize()

        return convert