mtl_io.py 18.9 KB
Newer Older
1
2
3
4
5
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.

"""This module implements utility functions for loading .mtl files and textures."""
import os
import warnings
Nikhila Ravi's avatar
Nikhila Ravi committed
6
from typing import Dict, List, Optional, Tuple
7
8
9
10
11
12
13
14
15
16
17

import numpy as np
import torch
import torch.nn.functional as F
from pytorch3d.io.utils import _open_file, _read_image


def make_mesh_texture_atlas(
    material_properties: Dict,
    texture_images: Dict,
    face_material_names,
18
19
    faces_uvs: torch.Tensor,
    verts_uvs: torch.Tensor,
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
    texture_size: int,
    texture_wrap: Optional[str],
) -> torch.Tensor:
    """
    Given properties for materials defined in the .mtl file, and the face texture uv
    coordinates, construct an (F, R, R, 3) texture atlas where R is the texture_size
    and F is the number of faces in the mesh.

    Args:
        material_properties: dict of properties for each material. If a material
                does not have any properties it will have an emtpy dict.
        texture_images: dict of material names and texture images
        face_material_names: numpy array of the material name corresponding to each
            face. Faces which don't have an associated material will be an empty string.
            For these faces, a uniform white texture is assigned.
35
36
37
        faces_uvs: LongTensor of shape (F, 3,) giving the index into the verts_uvs for
            each face in the mesh.
        verts_uvs: FloatTensor of shape (V, 2) giving the uv coordinates for each vertex.
38
39
40
41
42
43
44
45
46
47
48
49
50
51
        texture_size: the resolution of the per face texture map returned by this function.
            Each face will have a texture map of shape (texture_size, texture_size, 3).
        texture_wrap: string, one of ["repeat", "clamp", None]
            If `texture_wrap="repeat"` for uv values outside the range [0, 1] the integer part
            is ignored and a repeating pattern is formed.
            If `texture_wrap="clamp"` the values are clamped to the range [0, 1].
            If None, do nothing.

    Returns:
        atlas: FloatTensor of shape (F, texture_size, texture_size, 3) giving the per
        face texture map.
    """
    # Create an R x R texture map per face in the mesh
    R = texture_size
52
    F = faces_uvs.shape[0]
53
54
55

    # Initialize the per face texture map to a white color.
    # TODO: allow customization of this base color?
56
    atlas = torch.ones(size=(F, R, R, 3), dtype=torch.float32, device=faces_uvs.device)
57
58
59
60
61

    # Check for empty materials.
    if not material_properties and not texture_images:
        return atlas

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
    # Iterate through the material properties - not
    # all materials have texture images so this is
    # done first separately to the texture interpolation.
    for material_name, props in material_properties.items():
        # Bool to indicate which faces use this texture map.
        faces_material_ind = torch.from_numpy(face_material_names == material_name).to(
            faces_uvs.device
        )
        if faces_material_ind.sum() > 0:
            # For these faces, update the base color to the
            # diffuse material color.
            if "diffuse_color" not in props:
                continue
            atlas[faces_material_ind, ...] = props["diffuse_color"][None, :]

    # If there are vertex texture coordinates, create an (F, 3, 2)
    # tensor of the vertex textures per face.
    faces_verts_uvs = verts_uvs[faces_uvs] if len(verts_uvs) > 0 else None

    # Some meshes only have material properties and no texture image.
    # In this case, return the atlas here.
    if faces_verts_uvs is None:
        return atlas

86
87
88
89
90
    if texture_wrap == "repeat":
        # If texture uv coordinates are outside the range [0, 1] follow
        # the convention GL_REPEAT in OpenGL i.e the integer part of the coordinate
        # will be ignored and a repeating pattern is formed.
        # Shapenet data uses this format see:
91
        # https://shapenet.org/qaforum/index.php?qa=15&qa_1=why-is-the-texture-coordinate-in-the-obj-file-not-in-the-range # noqa: B950
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
        if (faces_verts_uvs > 1).any() or (faces_verts_uvs < 0).any():
            msg = "Texture UV coordinates outside the range [0, 1]. \
                The integer part will be ignored to form a repeating pattern."
            warnings.warn(msg)
            faces_verts_uvs = faces_verts_uvs % 1
    elif texture_wrap == "clamp":
        # Clamp uv coordinates to the [0, 1] range.
        faces_verts_uvs = faces_verts_uvs.clamp(0.0, 1.0)

    # Iterate through the materials used in this mesh. Update the
    # texture atlas for the faces which use this material.
    # Faces without texture are white.
    for material_name, image in list(texture_images.items()):
        # Only use the RGB colors
        if image.shape[2] == 4:
            image = image[:, :, :3]

        # Reverse the image y direction
        image = torch.flip(image, [0]).type_as(faces_verts_uvs)

        # Bool to indicate which faces use this texture map.
        faces_material_ind = torch.from_numpy(face_material_names == material_name).to(
            faces_verts_uvs.device
        )

        # Find the subset of faces which use this texture with this texture image
        uvs_subset = faces_verts_uvs[faces_material_ind, :, :]

        # Update the texture atlas for the faces which use this texture.
        # TODO: should the texture map values be multiplied
        # by the diffuse material color (i.e. use *= as the atlas has
        # been initialized to the diffuse color)?. This is
        # not being done in SoftRas.
        atlas[faces_material_ind, :, :] = make_material_atlas(image, uvs_subset, R)

    return atlas


def make_material_atlas(
    image: torch.Tensor, faces_verts_uvs: torch.Tensor, texture_size: int
) -> torch.Tensor:
    r"""
    Given a single texture image and the uv coordinates for all the
    face vertices, create a square texture map per face using
    the formulation from [1].

    For a triangle with vertices (v0, v1, v2) we can create a barycentric coordinate system
139
    with the x axis being the vector (v0 - v2) and the y axis being the vector (v1 - v2).
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
    The barycentric coordinates range from [0, 1] in the +x and +y direction so this creates
    a triangular texture space with vertices at (0, 1), (0, 0) and (1, 0).

    The per face texture map is of shape (texture_size, texture_size, 3)
    which is a square. To map a triangular texture to a square grid, each
    triangle is parametrized as follows (e.g. R = texture_size = 3):

    The triangle texture is first divided into RxR = 9 subtriangles which each
    map to one grid cell. The numbers in the grid cells and triangles show the mapping.

    ..code-block::python

        Triangular Texture Space:

              1
                |\
                |6 \
                |____\
                |\  7 |\
                |3 \  |4 \
                |____\|____\
                |\ 8  |\  5 |\
                |0 \  |1 \  |2 \
                |____\|____\|____\
               0                   1

        Square per face texture map:

               R ____________________
                |      |      |      |
                |  6   |  7   |  8   |
                |______|______|______|
                |      |      |      |
                |  3   |  4   |  5   |
                |______|______|______|
                |      |      |      |
                |  0   |  1   |  2   |
                |______|______|______|
               0                      R


    The barycentric coordinates of each grid cell are calculated using the
    xy coordinates:

    ..code-block::python

            The cartesian coordinates are:

            Grid 1:

               R ____________________
                |      |      |      |
                |  20  |  21  |  22  |
                |______|______|______|
                |      |      |      |
                |  10  |  11  |  12  |
                |______|______|______|
                |      |      |      |
                |  00  |  01  |  02  |
                |______|______|______|
               0                      R

            where 02 means y = 0, x = 2

        Now consider this subset of the triangle which corresponds to
        grid cells 0 and 8:

        ..code-block::python

            1/R  ________
                |\    8  |
                |  \     |
                | 0   \  |
                |_______\|
               0          1/R

        The centroids of the triangles are:
            0: (1/3, 1/3) * 1/R
            8: (2/3, 2/3) * 1/R

    For each grid cell we can now calculate the centroid `(c_y, c_x)`
    of the corresponding texture triangle:
        - if `(x + y) < R`, then offsett the centroid of
            triangle 0 by `(y, x) * (1/R)`
        - if `(x + y) > R`, then offset the centroid of
            triangle 8 by `((R-1-y), (R-1-x)) * (1/R)`.

    This is equivalent to updating the portion of Grid 1
    above the diagnonal, replacing `(y, x)` with `((R-1-y), (R-1-x))`:

    ..code-block::python

              R _____________________
                |      |      |      |
                |  20  |  01  |  00  |
                |______|______|______|
                |      |      |      |
                |  10  |  11  |  10  |
                |______|______|______|
                |      |      |      |
                |  00  |  01  |  02  |
                |______|______|______|
               0                      R

    The barycentric coordinates (w0, w1, w2) are then given by:

    ..code-block::python

        w0 = c_x
        w1 = c_y
        w2 = 1- w0 - w1

    Args:
        image: FloatTensor of shape (H, W, 3)
        faces_verts_uvs: uv coordinates for each vertex in each face  (F, 3, 2)
        texture_size: int

    Returns:
        atlas: a FloatTensor of shape (F, texture_size, texture_size, 3) giving a
            per face texture map.

    [1] Liu et al, 'Soft Rasterizer: A Differentiable Renderer for Image-based
        3D Reasoning', ICCV 2019
    """
    R = texture_size
    device = faces_verts_uvs.device
    rng = torch.arange(R, device=device)

    # Meshgrid returns (row, column) i.e (Y, X)
    # Change order to (X, Y) to make the grid.
    Y, X = torch.meshgrid(rng, rng)
271
    # pyre-fixme[28]: Unexpected keyword argument `axis`.
272
273
274
275
276
277
278
279
280
281
282
283
    grid = torch.stack([X, Y], axis=-1)  # (R, R, 2)

    # Grid cells below the diagonal: x + y < R.
    below_diag = grid.sum(-1) < R

    # map a [0, R] grid -> to a [0, 1] barycentric coordinates of
    # the texture triangle centroids.
    bary = torch.zeros((R, R, 3), device=device)  # (R, R, 3)
    slc = torch.arange(2, device=device)[:, None]
    # w0, w1
    bary[below_diag, slc] = ((grid[below_diag] + 1.0 / 3.0) / R).T
    # w0, w1 for above diagonal grid cells.
284
    # pyre-fixme[16]: `float` has no attribute `T`.
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
    bary[~below_diag, slc] = (((R - 1.0 - grid[~below_diag]) + 2.0 / 3.0) / R).T
    # w2 = 1. - w0 - w1
    bary[..., -1] = 1 - bary[..., :2].sum(dim=-1)

    # Calculate the uv position in the image for each pixel
    # in the per face texture map
    # (F, 1, 1, 3, 2) * (R, R, 3, 1) -> (F, R, R, 3, 2) -> (F, R, R, 2)
    uv_pos = (faces_verts_uvs[:, None, None] * bary[..., None]).sum(-2)

    # bi-linearly interpolate the textures from the images
    # using the uv coordinates given by uv_pos.
    textures = _bilinear_interpolation_vectorized(image, uv_pos)

    return textures


def _bilinear_interpolation_vectorized(
    image: torch.Tensor, grid: torch.Tensor
) -> torch.Tensor:
    """
    Bi linearly interpolate the image using the uv positions in the flow-field
    grid (following the naming conventions for torch.nn.functional.grid_sample).

    This implementation uses the same steps as in the SoftRas cuda kernel
    to make it easy to compare. This vectorized version requires less memory than
    _bilinear_interpolation_grid_sample but is slightly slower.
    If speed is an issue and the number of faces in the mesh and texture image sizes
    are small, consider using _bilinear_interpolation_grid_sample instead.

    Args:
        image: FloatTensor of shape (H, W, D) a single image/input tensor with D
            channels.
        grid: FloatTensor of shape (N, R, R, 2) giving the pixel locations of the
            points at which to sample a value in the image. The grid values must
            be in the range [0, 1]. u is the x direction and v is the y direction.

    Returns:
        out: FloatTensor of shape (N, H, W, D) giving the interpolated
            D dimensional value from image at each of the pixel locations in grid.

    """
    H, W, _ = image.shape
    # Convert [0, 1] to the range [0, W-1] and [0, H-1]
    grid = grid * torch.tensor([W - 1, H - 1]).type_as(grid)
    weight_1 = grid - grid.int()
    weight_0 = 1.0 - weight_1

    grid_x, grid_y = grid.unbind(-1)
    y0 = grid_y.to(torch.int64)
    y1 = (grid_y + 1).to(torch.int64)
    x0 = grid_x.to(torch.int64)
    x1 = x0 + 1

    weight_x0, weight_y0 = weight_0.unbind(-1)
    weight_x1, weight_y1 = weight_1.unbind(-1)

    # Bi-linear interpolation
    # griditions = [[y,     x], [(y+1),     x]
    #              [y, (x+1)], [(y+1), (x+1)]]
    # weights   = [[wx0*wy0, wx0*wy1],
    #              [wx1*wy0, wx1*wy1]]
    out = (
        image[y0, x0] * (weight_x0 * weight_y0)[..., None]
        + image[y1, x0] * (weight_x0 * weight_y1)[..., None]
        + image[y0, x1] * (weight_x1 * weight_y0)[..., None]
        + image[y1, x1] * (weight_x1 * weight_y1)[..., None]
    )

    return out


def _bilinear_interpolation_grid_sample(
    image: torch.Tensor, grid: torch.Tensor
) -> torch.Tensor:
    """
    Bi linearly interpolate the image using the uv positions in the flow-field
    grid (following the conventions for torch.nn.functional.grid_sample).

    This implementation is faster than _bilinear_interpolation_vectorized but
    requires more memory so can cause OOMs. If speed is an issue try this function
    instead.

    Args:
        image: FloatTensor of shape (H, W, D) a single image/input tensor with D
            channels.
        grid: FloatTensor of shape (N, R, R, 2) giving the pixel locations of the
            points at which to sample a value in the image. The grid values must
            be in the range [0, 1]. u is the x direction and v is the y direction.

    Returns:
        out: FloatTensor of shape (N, H, W, D) giving the interpolated
            D dimensional value from image at each of the pixel locations in grid.
    """

    N = grid.shape[0]
    # convert [0, 1] to the range [-1, 1] expected by grid_sample.
    grid = grid * 2.0 - 1.0
    image = image.permute(2, 0, 1)[None, ...].expand(N, -1, -1, -1)  # (N, 3, H, W)
    # Align_corners has to be set to True to match the output of the SoftRas
    # cuda kernel for bilinear sampling.
    out = F.grid_sample(image, grid, mode="bilinear", align_corners=True)
    return out.permute(0, 2, 3, 1)


Nikhila Ravi's avatar
Nikhila Ravi committed
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
MaterialProperties = Dict[str, Dict[str, torch.Tensor]]
TextureFiles = Dict[str, str]
TextureImages = Dict[str, torch.Tensor]


def _parse_mtl(f, device="cpu") -> Tuple[MaterialProperties, TextureFiles]:
    material_properties = {}
    texture_files = {}
    material_name = ""

    with _open_file(f, "r") as f:
        for line in f:
            tokens = line.strip().split()
            if not tokens:
                continue
            if tokens[0] == "newmtl":
                material_name = tokens[1]
                material_properties[material_name] = {}
            elif tokens[0] == "map_Kd":
                # Diffuse texture map
409
410
411
                # Account for the case where filenames might have spaces
                filename = line.strip()[7:]
                texture_files[material_name] = filename
Nikhila Ravi's avatar
Nikhila Ravi committed
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
            elif tokens[0] == "Kd":
                # RGB diffuse reflectivity
                kd = np.array(tokens[1:4]).astype(np.float32)
                kd = torch.from_numpy(kd).to(device)
                material_properties[material_name]["diffuse_color"] = kd
            elif tokens[0] == "Ka":
                # RGB ambient reflectivity
                ka = np.array(tokens[1:4]).astype(np.float32)
                ka = torch.from_numpy(ka).to(device)
                material_properties[material_name]["ambient_color"] = ka
            elif tokens[0] == "Ks":
                # RGB specular reflectivity
                ks = np.array(tokens[1:4]).astype(np.float32)
                ks = torch.from_numpy(ks).to(device)
                material_properties[material_name]["specular_color"] = ks
            elif tokens[0] == "Ns":
                # Specular exponent
                ns = np.array(tokens[1:4]).astype(np.float32)
                ns = torch.from_numpy(ns).to(device)
                material_properties[material_name]["shininess"] = ns

    return material_properties, texture_files


def _load_texture_images(
    material_names: List[str],
    data_dir: str,
    material_properties: MaterialProperties,
    texture_files: TextureFiles,
) -> Tuple[MaterialProperties, TextureImages]:
    final_material_properties = {}
    texture_images = {}

    # Only keep the materials referenced in the obj.
    for material_name in material_names:
        if material_name in texture_files:
            # Load the texture image.
            path = os.path.join(data_dir, texture_files[material_name])
            if os.path.isfile(path):
                image = _read_image(path, format="RGB") / 255.0
                image = torch.from_numpy(image)
                texture_images[material_name] = image
            else:
                msg = f"Texture file does not exist: {path}"
                warnings.warn(msg)

        if material_name in material_properties:
            final_material_properties[material_name] = material_properties[
                material_name
            ]

    return final_material_properties, texture_images


def load_mtl(
    f, material_names: List[str], data_dir: str, device="cpu"
) -> Tuple[MaterialProperties, TextureImages]:
469
470
471
472
473
    """
    Load texture images and material reflectivity values for ambient, diffuse
    and specular light (Ka, Kd, Ks, Ns).

    Args:
474
        f: a file-like object of the material information.
475
476
477
478
        material_names: a list of the material names found in the .obj file.
        data_dir: the directory where the material texture files are located.

    Returns:
Nikhila Ravi's avatar
Nikhila Ravi committed
479
480
        material_properties: dict of properties for each material. If a material
                does not have any properties it will have an empty dict.
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
                {
                    material_name_1:  {
                        "ambient_color": tensor of shape (1, 3),
                        "diffuse_color": tensor of shape (1, 3),
                        "specular_color": tensor of shape (1, 3),
                        "shininess": tensor of shape (1)
                    },
                    material_name_2: {},
                    ...
                }
        texture_images: dict of material names and texture images
                {
                    material_name_1: (H, W, 3) image,
                    ...
                }
    """
Nikhila Ravi's avatar
Nikhila Ravi committed
497
498
499
500
    material_properties, texture_files = _parse_mtl(f, device)
    return _load_texture_images(
        material_names, data_dir, material_properties, texture_files
    )