"docs/modules/common.rst" did not exist on "14f7fe4a65c215e84b4ef9db6e02d538b1e08c6a"
test_lighting.py 22.5 KB
Newer Older
facebook-github-bot's avatar
facebook-github-bot committed
1
2
3
4
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.

import unittest

5
6
7
import numpy as np
import torch
from common_testing import TestCaseMixin
facebook-github-bot's avatar
facebook-github-bot committed
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
from pytorch3d.renderer.lighting import DirectionalLights, PointLights
from pytorch3d.transforms import RotateAxisAngle


class TestLights(TestCaseMixin, unittest.TestCase):
    def test_init_lights(self):
        """
        Initialize Lights class with the default values.
        """
        device = torch.device("cuda:0")
        light = DirectionalLights(device=device)
        keys = ["ambient_color", "diffuse_color", "specular_color", "direction"]
        for k in keys:
            prop = getattr(light, k)
            self.assertTrue(torch.is_tensor(prop))
            self.assertTrue(prop.device == device)
            self.assertTrue(prop.shape == (1, 3))

        light = PointLights(device=device)
        keys = ["ambient_color", "diffuse_color", "specular_color", "location"]
        for k in keys:
            prop = getattr(light, k)
            self.assertTrue(torch.is_tensor(prop))
            self.assertTrue(prop.device == device)
            self.assertTrue(prop.shape == (1, 3))

    def test_lights_clone_to(self):
        device = torch.device("cuda:0")
        cpu = torch.device("cpu")
        light = DirectionalLights()
        new_light = light.clone().to(device)
        keys = ["ambient_color", "diffuse_color", "specular_color", "direction"]
        for k in keys:
            prop = getattr(light, k)
            new_prop = getattr(new_light, k)
            self.assertTrue(prop.device == cpu)
            self.assertTrue(new_prop.device == device)
            self.assertSeparate(new_prop, prop)

        light = PointLights()
        new_light = light.clone().to(device)
        keys = ["ambient_color", "diffuse_color", "specular_color", "location"]
        for k in keys:
            prop = getattr(light, k)
            new_prop = getattr(new_light, k)
            self.assertTrue(prop.device == cpu)
            self.assertTrue(new_prop.device == device)
            self.assertSeparate(new_prop, prop)

    def test_lights_accessor(self):
58
        d_light = DirectionalLights(ambient_color=((0.0, 0.0, 0.0), (1.0, 1.0, 1.0)))
facebook-github-bot's avatar
facebook-github-bot committed
59
60
61
62
63
        p_light = PointLights(ambient_color=((0.0, 0.0, 0.0), (1.0, 1.0, 1.0)))
        for light in [d_light, p_light]:
            # Update element
            color = (0.5, 0.5, 0.5)
            light[1].ambient_color = color
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
64
            self.assertClose(light.ambient_color[1], torch.tensor(color))
facebook-github-bot's avatar
facebook-github-bot committed
65
66
            # Get item and get value
            l0 = light[0]
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
67
            self.assertClose(l0.ambient_color, torch.tensor((0.0, 0.0, 0.0)))
facebook-github-bot's avatar
facebook-github-bot committed
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

    def test_initialize_lights_broadcast(self):
        light = DirectionalLights(
            ambient_color=torch.randn(10, 3),
            diffuse_color=torch.randn(1, 3),
            specular_color=torch.randn(1, 3),
        )
        keys = ["ambient_color", "diffuse_color", "specular_color", "direction"]
        for k in keys:
            prop = getattr(light, k)
            self.assertTrue(prop.shape == (10, 3))

        light = PointLights(
            ambient_color=torch.randn(10, 3),
            diffuse_color=torch.randn(1, 3),
            specular_color=torch.randn(1, 3),
        )
        keys = ["ambient_color", "diffuse_color", "specular_color", "location"]
        for k in keys:
            prop = getattr(light, k)
            self.assertTrue(prop.shape == (10, 3))

    def test_initialize_lights_broadcast_fail(self):
        """
        Batch dims have to be the same or 1.
        """
        with self.assertRaises(ValueError):
            DirectionalLights(
96
                ambient_color=torch.randn(10, 3), diffuse_color=torch.randn(15, 3)
facebook-github-bot's avatar
facebook-github-bot committed
97
98
99
100
            )

        with self.assertRaises(ValueError):
            PointLights(
101
                ambient_color=torch.randn(10, 3), diffuse_color=torch.randn(15, 3)
facebook-github-bot's avatar
facebook-github-bot committed
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
            )

    def test_initialize_lights_dimensions_fail(self):
        """
        Color should have shape (N, 3) or (1, 3)
        """
        with self.assertRaises(ValueError):
            DirectionalLights(ambient_color=torch.randn(10, 4))

        with self.assertRaises(ValueError):
            DirectionalLights(direction=torch.randn(10, 4))

        with self.assertRaises(ValueError):
            PointLights(ambient_color=torch.randn(10, 4))

        with self.assertRaises(ValueError):
            PointLights(location=torch.randn(10, 4))


Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
121
class TestDiffuseLighting(TestCaseMixin, unittest.TestCase):
facebook-github-bot's avatar
facebook-github-bot committed
122
123
124
125
126
127
128
129
130
131
132
133
134
135
    def test_diffuse_directional_lights(self):
        """
        Test with a single point where:
        1) the normal and light direction are 45 degrees apart.
        2) the normal and light direction are 90 degrees apart. The output
           should be zero for this case
        """
        color = torch.tensor([1, 1, 1], dtype=torch.float32)
        direction = torch.tensor(
            [0, 1 / np.sqrt(2), 1 / np.sqrt(2)], dtype=torch.float32
        )
        normals = torch.tensor([0, 0, 1], dtype=torch.float32)
        normals = normals[None, None, :]
        expected_output = torch.tensor(
136
            [1 / np.sqrt(2), 1 / np.sqrt(2), 1 / np.sqrt(2)], dtype=torch.float32
facebook-github-bot's avatar
facebook-github-bot committed
137
        )
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
138
        expected_output = expected_output.view(1, 1, 3).repeat(3, 1, 1)
facebook-github-bot's avatar
facebook-github-bot committed
139
140
        light = DirectionalLights(diffuse_color=color, direction=direction)
        output_light = light.diffuse(normals=normals)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
141
        self.assertClose(output_light, expected_output)
facebook-github-bot's avatar
facebook-github-bot committed
142
143
144
145
146
147

        # Change light direction to be 90 degrees apart from normal direction.
        direction = torch.tensor([0, 1, 0], dtype=torch.float32)
        light.direction = direction
        expected_output = torch.zeros_like(expected_output)
        output_light = light.diffuse(normals=normals)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
148
        self.assertClose(output_light, expected_output)
facebook-github-bot's avatar
facebook-github-bot committed
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

    def test_diffuse_point_lights(self):
        """
        Test with a single point at the origin. Test two cases:
        1) the point light is at (1, 0, 1) hence the light direction is 45
           degrees apart from the normal direction
        1) the point light is at (0, 1, 0) hence the light direction is 90
           degrees apart from the normal direction. The output
           should be zero for this case
        """
        color = torch.tensor([1, 1, 1], dtype=torch.float32)
        location = torch.tensor(
            [0, 1 / np.sqrt(2), 1 / np.sqrt(2)], dtype=torch.float32
        )
        points = torch.tensor([0, 0, 0], dtype=torch.float32)
        normals = torch.tensor([0, 0, 1], dtype=torch.float32)
        expected_output = torch.tensor(
166
            [1 / np.sqrt(2), 1 / np.sqrt(2), 1 / np.sqrt(2)], dtype=torch.float32
facebook-github-bot's avatar
facebook-github-bot committed
167
168
        )
        expected_output = expected_output.view(-1, 1, 3)
169
        light = PointLights(diffuse_color=color[None, :], location=location[None, :])
facebook-github-bot's avatar
facebook-github-bot committed
170
171
172
        output_light = light.diffuse(
            points=points[None, None, :], normals=normals[None, None, :]
        )
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
173
        self.assertClose(output_light, expected_output)
facebook-github-bot's avatar
facebook-github-bot committed
174
175
176
177

        # Change light direction to be 90 degrees apart from normal direction.
        location = torch.tensor([0, 1, 0], dtype=torch.float32)
        expected_output = torch.zeros_like(expected_output)
178
        light = PointLights(diffuse_color=color[None, :], location=location[None, :])
facebook-github-bot's avatar
facebook-github-bot committed
179
180
181
        output_light = light.diffuse(
            points=points[None, None, :], normals=normals[None, None, :]
        )
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
182
        self.assertClose(output_light, expected_output)
facebook-github-bot's avatar
facebook-github-bot committed
183
184
185
186
187
188
189
190
191
192
193
194
195

    def test_diffuse_batched(self):
        """
        Test with a batch where each batch element has one point
        where the normal and light direction are 45 degrees apart.
        """
        batch_size = 10
        color = torch.tensor([1, 1, 1], dtype=torch.float32)
        direction = torch.tensor(
            [0, 1 / np.sqrt(2), 1 / np.sqrt(2)], dtype=torch.float32
        )
        normals = torch.tensor([0, 0, 1], dtype=torch.float32)
        expected_out = torch.tensor(
196
            [1 / np.sqrt(2), 1 / np.sqrt(2), 1 / np.sqrt(2)], dtype=torch.float32
facebook-github-bot's avatar
facebook-github-bot committed
197
198
199
200
201
202
203
204
205
206
        )

        # Reshape
        direction = direction.view(-1, 3).expand(batch_size, -1)
        normals = normals.view(-1, 1, 3).expand(batch_size, -1, -1)
        color = color.view(-1, 3).expand(batch_size, -1)
        expected_out = expected_out.view(-1, 1, 3).expand(batch_size, 1, 3)

        lights = DirectionalLights(diffuse_color=color, direction=direction)
        output_light = lights.diffuse(normals=normals)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
207
        self.assertClose(output_light, expected_out)
facebook-github-bot's avatar
facebook-github-bot committed
208
209
210
211
212
213
214
215
216
217
218
219
220
221

    def test_diffuse_batched_broadcast_inputs(self):
        """
        Test with a batch where each batch element has one point
        where the normal and light direction are 45 degrees apart.
        The color and direction are the same for each batch element.
        """
        batch_size = 10
        color = torch.tensor([1, 1, 1], dtype=torch.float32)
        direction = torch.tensor(
            [0, 1 / np.sqrt(2), 1 / np.sqrt(2)], dtype=torch.float32
        )
        normals = torch.tensor([0, 0, 1], dtype=torch.float32)
        expected_out = torch.tensor(
222
            [1 / np.sqrt(2), 1 / np.sqrt(2), 1 / np.sqrt(2)], dtype=torch.float32
facebook-github-bot's avatar
facebook-github-bot committed
223
224
225
226
227
228
229
230
231
232
233
234
235
        )

        # Reshape
        normals = normals.view(-1, 1, 3).expand(batch_size, -1, -1)
        expected_out = expected_out.view(-1, 1, 3).expand(batch_size, 1, 3)

        # Don't expand the direction or color. Broadcasting should happen
        # in the diffuse function.
        direction = direction.view(1, 3)
        color = color.view(1, 3)

        lights = DirectionalLights(diffuse_color=color, direction=direction)
        output_light = lights.diffuse(normals=normals)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
236
        self.assertClose(output_light, expected_out)
facebook-github-bot's avatar
facebook-github-bot committed
237
238
239
240
241
242
243
244
245
246
247

    def test_diffuse_batched_arbitrary_input_dims(self):
        """
        Test with a batch of inputs where shape of the input is mimicking the
        shape in a shading function i.e. an interpolated normal per pixel for
        top K faces per pixel.
        """
        N, H, W, K = 16, 256, 256, 100
        device = torch.device("cuda:0")
        color = torch.tensor([1, 1, 1], dtype=torch.float32, device=device)
        direction = torch.tensor(
248
            [0, 1 / np.sqrt(2), 1 / np.sqrt(2)], dtype=torch.float32, device=device
facebook-github-bot's avatar
facebook-github-bot committed
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
        )
        normals = torch.tensor([0, 0, 1], dtype=torch.float32, device=device)
        normals = normals.view(1, 1, 1, 1, 3).expand(N, H, W, K, -1)
        direction = direction.view(1, 3)
        color = color.view(1, 3)
        expected_output = torch.tensor(
            [1 / np.sqrt(2), 1 / np.sqrt(2), 1 / np.sqrt(2)],
            dtype=torch.float32,
            device=device,
        )
        expected_output = expected_output.view(1, 1, 1, 1, 3)
        expected_output = expected_output.expand(N, H, W, K, -1)

        lights = DirectionalLights(diffuse_color=color, direction=direction)
        output_light = lights.diffuse(normals=normals)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
264
        self.assertClose(output_light, expected_output)
facebook-github-bot's avatar
facebook-github-bot committed
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294

    def test_diffuse_batched_packed(self):
        """
        Test with a batch of 2 meshes each of which has faces on a single plane.
        The normal and light direction are 45 degrees apart for the first mesh
        and 90 degrees apart for the second mesh.

        The points and normals are in the packed format i.e. no batch dimension.
        """
        verts_packed = torch.rand((10, 3))  # points aren't used
        faces_per_mesh = [6, 4]
        mesh_to_vert_idx = [0] * faces_per_mesh[0] + [1] * faces_per_mesh[1]
        mesh_to_vert_idx = torch.tensor(mesh_to_vert_idx, dtype=torch.int64)
        color = torch.tensor([[1, 1, 1], [1, 1, 1]], dtype=torch.float32)
        direction = torch.tensor(
            [
                [0, 1 / np.sqrt(2), 1 / np.sqrt(2)],
                [0, 1, 0],  # 90 degrees to normal so zero diffuse light
            ],
            dtype=torch.float32,
        )
        normals = torch.tensor([[0, 0, 1], [0, 0, 1]], dtype=torch.float32)
        expected_output = torch.zeros_like(verts_packed, dtype=torch.float32)
        expected_output[:6, :] += 1 / np.sqrt(2)
        expected_output[6:, :] = 0.0
        lights = DirectionalLights(
            diffuse_color=color[mesh_to_vert_idx, :],
            direction=direction[mesh_to_vert_idx, :],
        )
        output_light = lights.diffuse(normals=normals[mesh_to_vert_idx, :])
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
295
        self.assertClose(output_light, expected_output)
facebook-github-bot's avatar
facebook-github-bot committed
296
297


Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
298
class TestSpecularLighting(TestCaseMixin, unittest.TestCase):
facebook-github-bot's avatar
facebook-github-bot committed
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
    def test_specular_directional_lights(self):
        """
        Specular highlights depend on the camera position as well as the light
        position/direction.
        Test with a single point where:
        1) the normal and light direction are -45 degrees apart and the normal
           and camera position are +45 degrees apart. The reflected light ray
           will be perfectly aligned with the camera so the output is 1.0.
        2) the normal and light direction are -45 degrees apart and the
           camera position is behind the point. The output should be zero for
           this case.
        """
        color = torch.tensor([1, 0, 1], dtype=torch.float32)
        direction = torch.tensor(
            [-1 / np.sqrt(2), 1 / np.sqrt(2), 0], dtype=torch.float32
        )
        camera_position = torch.tensor(
            [+1 / np.sqrt(2), 1 / np.sqrt(2), 0], dtype=torch.float32
        )
        points = torch.tensor([0, 0, 0], dtype=torch.float32)
        normals = torch.tensor([0, 1, 0], dtype=torch.float32)
        expected_output = torch.tensor([1.0, 0.0, 1.0], dtype=torch.float32)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
321
        expected_output = expected_output.view(1, 1, 3).repeat(3, 1, 1)
facebook-github-bot's avatar
facebook-github-bot committed
322
323
324
325
326
327
328
        lights = DirectionalLights(specular_color=color, direction=direction)
        output_light = lights.specular(
            points=points[None, None, :],
            normals=normals[None, None, :],
            camera_position=camera_position[None, :],
            shininess=torch.tensor(10),
        )
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
329
        self.assertClose(output_light, expected_output)
facebook-github-bot's avatar
facebook-github-bot committed
330
331
332
333
334
335
336
337
338
339
340
341

        # Change camera position to be behind the point.
        camera_position = torch.tensor(
            [+1 / np.sqrt(2), -1 / np.sqrt(2), 0], dtype=torch.float32
        )
        expected_output = torch.zeros_like(expected_output)
        output_light = lights.specular(
            points=points[None, None, :],
            normals=normals[None, None, :],
            camera_position=camera_position[None, :],
            shininess=torch.tensor(10),
        )
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
342
        self.assertClose(output_light, expected_output)
facebook-github-bot's avatar
facebook-github-bot committed
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360

    def test_specular_point_lights(self):
        """
        Replace directional lights with point lights and check the output
        is the same.

        Test an additional case where the angle between the light reflection
        direction and the view direction is 30 degrees.
        """
        color = torch.tensor([1, 0, 1], dtype=torch.float32)
        location = torch.tensor([-1, 1, 0], dtype=torch.float32)
        camera_position = torch.tensor(
            [+1 / np.sqrt(2), 1 / np.sqrt(2), 0], dtype=torch.float32
        )
        points = torch.tensor([0, 0, 0], dtype=torch.float32)
        normals = torch.tensor([0, 1, 0], dtype=torch.float32)
        expected_output = torch.tensor([1.0, 0.0, 1.0], dtype=torch.float32)
        expected_output = expected_output.view(-1, 1, 3)
361
        lights = PointLights(specular_color=color[None, :], location=location[None, :])
facebook-github-bot's avatar
facebook-github-bot committed
362
363
364
365
366
367
        output_light = lights.specular(
            points=points[None, None, :],
            normals=normals[None, None, :],
            camera_position=camera_position[None, :],
            shininess=torch.tensor(10),
        )
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
368
        self.assertClose(output_light, expected_output)
facebook-github-bot's avatar
facebook-github-bot committed
369
370
371
372
373
374
375
376
377
378
379
380

        # Change camera position to be behind the point
        camera_position = torch.tensor(
            [+1 / np.sqrt(2), -1 / np.sqrt(2), 0], dtype=torch.float32
        )
        expected_output = torch.zeros_like(expected_output)
        output_light = lights.specular(
            points=points[None, None, :],
            normals=normals[None, None, :],
            camera_position=camera_position[None, :],
            shininess=torch.tensor(10),
        )
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
381
        self.assertClose(output_light, expected_output)
facebook-github-bot's avatar
facebook-github-bot committed
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399

        # Change camera direction to be 30 degrees from the reflection direction
        camera_position = torch.tensor(
            [+1 / np.sqrt(2), 1 / np.sqrt(2), 0], dtype=torch.float32
        )
        rotate_30 = RotateAxisAngle(-30, axis="z")
        camera_position = rotate_30.transform_points(camera_position[None, :])
        expected_output = torch.tensor(
            [np.cos(30.0 * np.pi / 180), 0.0, np.cos(30.0 * np.pi / 180)],
            dtype=torch.float32,
        )
        expected_output = expected_output.view(-1, 1, 3)
        output_light = lights.specular(
            points=points[None, None, :],
            normals=normals[None, None, :],
            camera_position=camera_position[None, :],
            shininess=torch.tensor(10),
        )
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
400
        self.assertClose(output_light, expected_output ** 10)
facebook-github-bot's avatar
facebook-github-bot committed
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429

    def test_specular_batched(self):
        batch_size = 10
        color = torch.tensor([1, 0, 1], dtype=torch.float32)
        direction = torch.tensor(
            [-1 / np.sqrt(2), 1 / np.sqrt(2), 0], dtype=torch.float32
        )
        camera_position = torch.tensor(
            [+1 / np.sqrt(2), 1 / np.sqrt(2), 0], dtype=torch.float32
        )
        points = torch.tensor([0, 0, 0], dtype=torch.float32)
        normals = torch.tensor([0, 1, 0], dtype=torch.float32)
        expected_out = torch.tensor([1.0, 0.0, 1.0], dtype=torch.float32)

        # Reshape
        direction = direction.view(1, 3).expand(batch_size, -1)
        camera_position = camera_position.view(1, 3).expand(batch_size, -1)
        normals = normals.view(1, 1, 3).expand(batch_size, -1, -1)
        points = points.view(1, 1, 3).expand(batch_size, -1, -1)
        color = color.view(1, 3).expand(batch_size, -1)
        expected_out = expected_out.view(1, 1, 3).expand(batch_size, 1, 3)

        lights = DirectionalLights(specular_color=color, direction=direction)
        output_light = lights.specular(
            points=points,
            normals=normals,
            camera_position=camera_position,
            shininess=torch.tensor(10),
        )
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
430
        self.assertClose(output_light, expected_out)
facebook-github-bot's avatar
facebook-github-bot committed
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462

    def test_specular_batched_broadcast_inputs(self):
        batch_size = 10
        color = torch.tensor([1, 0, 1], dtype=torch.float32)
        direction = torch.tensor(
            [-1 / np.sqrt(2), 1 / np.sqrt(2), 0], dtype=torch.float32
        )
        camera_position = torch.tensor(
            [+1 / np.sqrt(2), 1 / np.sqrt(2), 0], dtype=torch.float32
        )
        points = torch.tensor([0, 0, 0], dtype=torch.float32)
        normals = torch.tensor([0, 1, 0], dtype=torch.float32)
        expected_out = torch.tensor([1.0, 0.0, 1.0], dtype=torch.float32)

        # Reshape
        normals = normals.view(1, 1, 3).expand(batch_size, -1, -1)
        points = points.view(1, 1, 3).expand(batch_size, -1, -1)
        expected_out = expected_out.view(1, 1, 3).expand(batch_size, 1, 3)

        # Don't expand the direction, color or camera_position.
        # These should be broadcasted in the specular function
        direction = direction.view(1, 3)
        camera_position = camera_position.view(1, 3)
        color = color.view(1, 3)

        lights = DirectionalLights(specular_color=color, direction=direction)
        output_light = lights.specular(
            points=points,
            normals=normals,
            camera_position=camera_position,
            shininess=torch.tensor(10),
        )
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
463
        self.assertClose(output_light, expected_out)
facebook-github-bot's avatar
facebook-github-bot committed
464
465
466
467
468
469
470
471

    def test_specular_batched_arbitrary_input_dims(self):
        """
        Test with a batch of inputs where shape of the input is mimicking the
        shape expected after rasterization i.e. a normal per pixel for
        top K faces per pixel.
        """
        device = torch.device("cuda:0")
472
        N, H, W, K = 8, 128, 128, 100
facebook-github-bot's avatar
facebook-github-bot committed
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
        color = torch.tensor([1, 0, 1], dtype=torch.float32, device=device)
        direction = torch.tensor(
            [-1 / np.sqrt(2), 1 / np.sqrt(2), 0], dtype=torch.float32
        )
        camera_position = torch.tensor(
            [+1 / np.sqrt(2), 1 / np.sqrt(2), 0], dtype=torch.float32
        )
        points = torch.tensor([0, 0, 0], dtype=torch.float32, device=device)
        normals = torch.tensor([0, 1, 0], dtype=torch.float32, device=device)
        points = points.view(1, 1, 1, 1, 3).expand(N, H, W, K, 3)
        normals = normals.view(1, 1, 1, 1, 3).expand(N, H, W, K, 3)

        direction = direction.view(1, 3)
        color = color.view(1, 3)
        camera_position = camera_position.view(1, 3)

        expected_output = torch.tensor(
            [1.0, 0.0, 1.0], dtype=torch.float32, device=device
        )
        expected_output = expected_output.view(-1, 1, 1, 1, 3)
        expected_output = expected_output.expand(N, H, W, K, -1)

        lights = DirectionalLights(specular_color=color, direction=direction)
        output_light = lights.specular(
            points=points,
            normals=normals,
            camera_position=camera_position,
            shininess=10.0,
        )
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
502
        self.assertClose(output_light, expected_output)
facebook-github-bot's avatar
facebook-github-bot committed
503
504
505
506
507
508
509
510
511
512
513

    def test_specular_batched_packed(self):
        """
        Test with a batch of 2 meshes each of which has faces on a single plane.
        The points and normals are in the packed format i.e. no batch dimension.
        """
        faces_per_mesh = [6, 4]
        mesh_to_vert_idx = [0] * faces_per_mesh[0] + [1] * faces_per_mesh[1]
        mesh_to_vert_idx = torch.tensor(mesh_to_vert_idx, dtype=torch.int64)
        color = torch.tensor([[1, 1, 1], [1, 0, 1]], dtype=torch.float32)
        direction = torch.tensor(
514
            [[-1 / np.sqrt(2), 1 / np.sqrt(2), 0], [-1, 1, 0]], dtype=torch.float32
facebook-github-bot's avatar
facebook-github-bot committed
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
        )
        camera_position = torch.tensor(
            [
                [+1 / np.sqrt(2), 1 / np.sqrt(2), 0],
                [+1 / np.sqrt(2), -1 / np.sqrt(2), 0],
            ],
            dtype=torch.float32,
        )
        points = torch.tensor([[0, 0, 0]], dtype=torch.float32)
        normals = torch.tensor([[0, 1, 0], [0, 1, 0]], dtype=torch.float32)
        expected_output = torch.zeros((10, 3), dtype=torch.float32)
        expected_output[:6, :] += 1.0

        lights = DirectionalLights(
            specular_color=color[mesh_to_vert_idx, :],
            direction=direction[mesh_to_vert_idx, :],
        )
        output_light = lights.specular(
            points=points.view(-1, 3).expand(10, -1),
            normals=normals.view(-1, 3)[mesh_to_vert_idx, :],
            camera_position=camera_position[mesh_to_vert_idx, :],
            shininess=10.0,
        )
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
538
        self.assertClose(output_light, expected_output)