test_interpolate_face_attributes.py 7.09 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.

import unittest

import torch
from common_testing import TestCaseMixin, get_random_cuda_device
from pytorch3d.ops.interp_face_attrs import (
    interpolate_face_attributes,
    interpolate_face_attributes_python,
)
from pytorch3d.renderer.mesh.rasterizer import Fragments
Nikhila Ravi's avatar
Nikhila Ravi committed
12
from pytorch3d.renderer.mesh.texturing import interpolate_vertex_colors
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
from pytorch3d.structures import Meshes, Textures


class TestInterpolateFaceAttributes(TestCaseMixin, unittest.TestCase):
    def _test_interp_face_attrs(self, interp_fun, device):
        pix_to_face = [0, 2, -1, 0, 1, -1]
        barycentric_coords = [
            [1.0, 0.0, 0.0],
            [0.0, 1.0, 0.0],
            [0.0, 0.0, 1.0],
            [0.5, 0.5, 0.0],
            [0.8, 0.0, 0.2],
            [0.25, 0.5, 0.25],
        ]
        face_attrs = [
            [[1, 2], [3, 4], [5, 6]],
            [[7, 8], [9, 10], [11, 12]],
            [[13, 14], [15, 16], [17, 18]],
        ]
        pix_attrs = [
            [1, 2],
            [15, 16],
            [0, 0],
            [2, 3],
            [0.8 * 7 + 0.2 * 11, 0.8 * 8 + 0.2 * 12],
            [0, 0],
        ]
        N, H, W, K, D = 1, 2, 1, 3, 2
        pix_to_face = torch.tensor(pix_to_face, dtype=torch.int64, device=device)
        pix_to_face = pix_to_face.view(N, H, W, K)
        barycentric_coords = torch.tensor(
            barycentric_coords, dtype=torch.float32, device=device
        )
        barycentric_coords = barycentric_coords.view(N, H, W, K, 3)
        face_attrs = torch.tensor(face_attrs, dtype=torch.float32, device=device)
        pix_attrs = torch.tensor(pix_attrs, dtype=torch.float32, device=device)
        pix_attrs = pix_attrs.view(N, H, W, K, D)

        args = (pix_to_face, barycentric_coords, face_attrs)
        pix_attrs_actual = interp_fun(*args)
        self.assertClose(pix_attrs_actual, pix_attrs)

    def test_python(self):
        device = torch.device("cuda:0")
        self._test_interp_face_attrs(interpolate_face_attributes_python, device)

    def test_cuda(self):
        device = torch.device("cuda:0")
        self._test_interp_face_attrs(interpolate_face_attributes, device)

    def test_python_vs_cuda(self):
        N, H, W, K = 2, 32, 32, 5
        F = 1000
        D = 3
        device = get_random_cuda_device()
        torch.manual_seed(598)
        pix_to_face = torch.randint(-F, F, (N, H, W, K), device=device)
        barycentric_coords = torch.randn(
            N, H, W, K, 3, device=device, requires_grad=True
        )
        face_attrs = torch.randn(F, 3, D, device=device, requires_grad=True)
        grad_pix_attrs = torch.randn(N, H, W, K, D, device=device)
        args = (pix_to_face, barycentric_coords, face_attrs)

        # Run the python version
        pix_attrs_py = interpolate_face_attributes_python(*args)
        pix_attrs_py.backward(gradient=grad_pix_attrs)
        grad_bary_py = barycentric_coords.grad.clone()
        grad_face_attrs_py = face_attrs.grad.clone()

        # Clear gradients
        barycentric_coords.grad.zero_()
        face_attrs.grad.zero_()

        # Run the CUDA version
        pix_attrs_cu = interpolate_face_attributes(*args)
        pix_attrs_cu.backward(gradient=grad_pix_attrs)
        grad_bary_cu = barycentric_coords.grad.clone()
        grad_face_attrs_cu = face_attrs.grad.clone()

        # Check they are the same
        self.assertClose(pix_attrs_py, pix_attrs_cu, rtol=2e-3)
        self.assertClose(grad_bary_py, grad_bary_cu, rtol=1e-4)
        self.assertClose(grad_face_attrs_py, grad_face_attrs_cu, rtol=1e-3)

    def test_interpolate_attributes(self):
        """
        This tests both interpolate_vertex_colors as well as
        interpolate_face_attributes.
        """
        verts = torch.randn((4, 3), dtype=torch.float32)
        faces = torch.tensor([[2, 1, 0], [3, 1, 0]], dtype=torch.int64)
        vert_tex = torch.tensor(
            [[0, 1, 0], [0, 1, 1], [1, 1, 0], [1, 1, 1]], dtype=torch.float32
        )
        tex = Textures(verts_rgb=vert_tex[None, :])
        mesh = Meshes(verts=[verts], faces=[faces], textures=tex)
        pix_to_face = torch.tensor([0, 1], dtype=torch.int64).view(1, 1, 1, 2)
        barycentric_coords = torch.tensor(
            [[0.5, 0.3, 0.2], [0.3, 0.6, 0.1]], dtype=torch.float32
        ).view(1, 1, 1, 2, -1)
        expected_vals = torch.tensor(
            [[0.5, 1.0, 0.3], [0.3, 1.0, 0.9]], dtype=torch.float32
        ).view(1, 1, 1, 2, -1)
        fragments = Fragments(
            pix_to_face=pix_to_face,
            bary_coords=barycentric_coords,
            zbuf=torch.ones_like(pix_to_face),
            dists=torch.ones_like(pix_to_face),
        )
        texels = interpolate_vertex_colors(fragments, mesh)
        self.assertTrue(torch.allclose(texels, expected_vals[None, :]))

    def test_interpolate_attributes_grad(self):
        verts = torch.randn((4, 3), dtype=torch.float32)
        faces = torch.tensor([[2, 1, 0], [3, 1, 0]], dtype=torch.int64)
        vert_tex = torch.tensor(
            [[0, 1, 0], [0, 1, 1], [1, 1, 0], [1, 1, 1]],
            dtype=torch.float32,
            requires_grad=True,
        )
        tex = Textures(verts_rgb=vert_tex[None, :])
        mesh = Meshes(verts=[verts], faces=[faces], textures=tex)
        pix_to_face = torch.tensor([0, 1], dtype=torch.int64).view(1, 1, 1, 2)
        barycentric_coords = torch.tensor(
            [[0.5, 0.3, 0.2], [0.3, 0.6, 0.1]], dtype=torch.float32
        ).view(1, 1, 1, 2, -1)
        fragments = Fragments(
            pix_to_face=pix_to_face,
            bary_coords=barycentric_coords,
            zbuf=torch.ones_like(pix_to_face),
            dists=torch.ones_like(pix_to_face),
        )
        grad_vert_tex = torch.tensor(
            [[0.3, 0.3, 0.3], [0.9, 0.9, 0.9], [0.5, 0.5, 0.5], [0.3, 0.3, 0.3]],
            dtype=torch.float32,
        )
        texels = interpolate_vertex_colors(fragments, mesh)
        texels.sum().backward()
        self.assertTrue(hasattr(vert_tex, "grad"))
        self.assertTrue(torch.allclose(vert_tex.grad, grad_vert_tex[None, :]))

    def test_interpolate_face_attributes_fail(self):
        # 1. A face can only have 3 verts
        #   i.e. face_attributes must have shape (F, 3, D)
        face_attributes = torch.ones(1, 4, 3)
        pix_to_face = torch.ones((1, 1, 1, 1))
        fragments = Fragments(
            pix_to_face=pix_to_face,
            bary_coords=pix_to_face[..., None].expand(-1, -1, -1, -1, 3),
            zbuf=pix_to_face,
            dists=pix_to_face,
        )
        with self.assertRaises(ValueError):
            interpolate_face_attributes(
                fragments.pix_to_face, fragments.bary_coords, face_attributes
            )

        # 2. pix_to_face must have shape (N, H, W, K)
        pix_to_face = torch.ones((1, 1, 1, 1, 3))
        fragments = Fragments(
            pix_to_face=pix_to_face,
            bary_coords=pix_to_face,
            zbuf=pix_to_face,
            dists=pix_to_face,
        )
        with self.assertRaises(ValueError):
            interpolate_face_attributes(
                fragments.pix_to_face, fragments.bary_coords, face_attributes
            )