pulsar_cam.py 5.27 KB
Newer Older
Christoph Lassner's avatar
Christoph Lassner committed
1
2
3
4
5
6
7
8
9
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
"""
This example demonstrates camera parameter optimization with the plain
pulsar interface. For this, a reference image has been pre-generated
(you can find it at `../../tests/pulsar/reference/examples_TestRenderer_test_cam.png`).
The same scene parameterization is loaded and the camera parameters
distorted. Gradient-based optimization is used to converge towards the
original camera parameters.
Christoph Lassner's avatar
Christoph Lassner committed
10
Output: cam.gif.
Christoph Lassner's avatar
Christoph Lassner committed
11
"""
Christoph Lassner's avatar
Christoph Lassner committed
12
import logging
Christoph Lassner's avatar
Christoph Lassner committed
13
import math
Christoph Lassner's avatar
Christoph Lassner committed
14
15
16
17
18
19
20
from os import path

import cv2
import imageio
import numpy as np
import torch
from pytorch3d.renderer.points.pulsar import Renderer
Christoph Lassner's avatar
Christoph Lassner committed
21
from pytorch3d.transforms import axis_angle_to_matrix, matrix_to_rotation_6d
Christoph Lassner's avatar
Christoph Lassner committed
22
23
24
from torch import nn, optim


Christoph Lassner's avatar
Christoph Lassner committed
25
26
27
28
29
LOGGER = logging.getLogger(__name__)
N_POINTS = 20
WIDTH = 1_000
HEIGHT = 1_000
DEVICE = torch.device("cuda")
Christoph Lassner's avatar
Christoph Lassner committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49


class SceneModel(nn.Module):
    """
    A simple scene model to demonstrate use of pulsar in PyTorch modules.

    The scene model is parameterized with sphere locations (vert_pos),
    channel content (vert_col), radiuses (vert_rad), camera position (cam_pos),
    camera rotation (cam_rot) and sensor focal length and width (cam_sensor).

    The forward method of the model renders this scene description. Any
    of these parameters could instead be passed as inputs to the forward
    method and come from a different model.
    """

    def __init__(self):
        super(SceneModel, self).__init__()
        self.gamma = 0.1
        # Points.
        torch.manual_seed(1)
Christoph Lassner's avatar
Christoph Lassner committed
50
        vert_pos = torch.rand(N_POINTS, 3, dtype=torch.float32) * 10.0
Christoph Lassner's avatar
Christoph Lassner committed
51
52
53
54
55
56
        vert_pos[:, 2] += 25.0
        vert_pos[:, :2] -= 5.0
        self.register_parameter("vert_pos", nn.Parameter(vert_pos, requires_grad=False))
        self.register_parameter(
            "vert_col",
            nn.Parameter(
Christoph Lassner's avatar
Christoph Lassner committed
57
                torch.rand(N_POINTS, 3, dtype=torch.float32), requires_grad=False
Christoph Lassner's avatar
Christoph Lassner committed
58
59
60
61
62
            ),
        )
        self.register_parameter(
            "vert_rad",
            nn.Parameter(
Christoph Lassner's avatar
Christoph Lassner committed
63
                torch.rand(N_POINTS, dtype=torch.float32), requires_grad=False
Christoph Lassner's avatar
Christoph Lassner committed
64
65
66
67
68
69
70
71
72
73
            ),
        )
        self.register_parameter(
            "cam_pos",
            nn.Parameter(
                torch.tensor([0.1, 0.1, 0.0], dtype=torch.float32), requires_grad=True
            ),
        )
        self.register_parameter(
            "cam_rot",
Christoph Lassner's avatar
Christoph Lassner committed
74
            # We're using the 6D rot. representation for better gradients.
Christoph Lassner's avatar
Christoph Lassner committed
75
            nn.Parameter(
Christoph Lassner's avatar
Christoph Lassner committed
76
77
78
79
80
81
82
83
84
85
                matrix_to_rotation_6d(
                    axis_angle_to_matrix(
                        torch.tensor(
                            [
                                [0.02, math.pi + 0.02, 0.01],
                            ],
                            dtype=torch.float32,
                        )
                    )
                )[0],
Christoph Lassner's avatar
Christoph Lassner committed
86
87
88
89
90
91
92
93
94
                requires_grad=True,
            ),
        )
        self.register_parameter(
            "cam_sensor",
            nn.Parameter(
                torch.tensor([4.8, 1.8], dtype=torch.float32), requires_grad=True
            ),
        )
Christoph Lassner's avatar
Christoph Lassner committed
95
        self.renderer = Renderer(WIDTH, HEIGHT, N_POINTS, right_handed_system=True)
Christoph Lassner's avatar
Christoph Lassner committed
96
97
98
99
100
101
102
103
104
105
106
107

    def forward(self):
        return self.renderer.forward(
            self.vert_pos,
            self.vert_col,
            self.vert_rad,
            torch.cat([self.cam_pos, self.cam_rot, self.cam_sensor]),
            self.gamma,
            45.0,
        )


Christoph Lassner's avatar
Christoph Lassner committed
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
def cli():
    """
    Camera optimization example using pulsar.

    Writes to `cam.gif`.
    """
    LOGGER.info("Loading reference...")
    # Load reference.
    ref = (
        torch.from_numpy(
            imageio.imread(
                "../../tests/pulsar/reference/examples_TestRenderer_test_cam.png"
            )[:, ::-1, :].copy()
        ).to(torch.float32)
        / 255.0
    ).to(DEVICE)
    # Set up model.
    model = SceneModel().to(DEVICE)
    # Optimizer.
    optimizer = optim.SGD(
        [
            {"params": [model.cam_pos], "lr": 1e-4},  # 1e-3
            {"params": [model.cam_rot], "lr": 5e-6},
            {"params": [model.cam_sensor], "lr": 1e-4},
Christoph Lassner's avatar
Christoph Lassner committed
132
133
        ]
    )
Christoph Lassner's avatar
Christoph Lassner committed
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175

    LOGGER.info("Writing video to `%s`.", path.abspath("cam.gif"))
    writer = imageio.get_writer("cam.gif", format="gif", fps=25)

    # Optimize.
    for i in range(300):
        optimizer.zero_grad()
        result = model()
        # Visualize.
        result_im = (result.cpu().detach().numpy() * 255).astype(np.uint8)
        cv2.imshow("opt", result_im[:, :, ::-1])
        writer.append_data(result_im)
        overlay_img = np.ascontiguousarray(
            ((result * 0.5 + ref * 0.5).cpu().detach().numpy() * 255).astype(np.uint8)[
                :, :, ::-1
            ]
        )
        overlay_img = cv2.putText(
            overlay_img,
            "Step %d" % (i),
            (10, 40),
            cv2.FONT_HERSHEY_SIMPLEX,
            1,
            (0, 0, 0),
            2,
            cv2.LINE_AA,
            False,
        )
        cv2.imshow("overlay", overlay_img)
        cv2.waitKey(1)
        # Update.
        loss = ((result - ref) ** 2).sum()
        LOGGER.info("loss %d: %f", i, loss.item())
        loss.backward()
        optimizer.step()
    writer.close()
    LOGGER.info("Done.")


if __name__ == "__main__":
    logging.basicConfig(level=logging.INFO)
    cli()