pulsar_multiview.py 6 KB
Newer Older
Christoph Lassner's avatar
Christoph Lassner committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
"""
This example demonstrates multiview 3D reconstruction using the plain
pulsar interface. For this, reference images have been pre-generated
(you can find them at `../../tests/pulsar/reference/examples_TestRenderer_test_multiview_%d.png`).
The camera parameters are assumed given. The scene is initialized with
random spheres. Gradient-based optimization is used to optimize sphere
parameters and prune spheres to converge to a 3D representation.
"""
from os import path

import cv2
import imageio
import numpy as np
import torch
from pytorch3d.renderer.points.pulsar import Renderer
from torch import nn, optim


n_points = 400_000
width = 1_000
height = 1_000
visualize_ids = [0, 1]
device = torch.device("cuda")


class SceneModel(nn.Module):
    """
    A simple scene model to demonstrate use of pulsar in PyTorch modules.

    The scene model is parameterized with sphere locations (vert_pos),
    channel content (vert_col), radiuses (vert_rad), camera position (cam_pos),
    camera rotation (cam_rot) and sensor focal length and width (cam_sensor).

    The forward method of the model renders this scene description. Any
    of these parameters could instead be passed as inputs to the forward
    method and come from a different model. Optionally, camera parameters can
    be provided to the forward method in which case the scene is rendered
    using those parameters.
    """

    def __init__(self):
        super(SceneModel, self).__init__()
        self.gamma = 1.0
        # Points.
        torch.manual_seed(1)
        vert_pos = torch.rand((1, n_points, 3), dtype=torch.float32) * 10.0
        vert_pos[:, :, 2] += 25.0
        vert_pos[:, :, :2] -= 5.0
        self.register_parameter("vert_pos", nn.Parameter(vert_pos, requires_grad=True))
        self.register_parameter(
            "vert_col",
            nn.Parameter(
                torch.ones(1, n_points, 3, dtype=torch.float32) * 0.5,
                requires_grad=True,
            ),
        )
        self.register_parameter(
            "vert_rad",
            nn.Parameter(
                torch.ones(1, n_points, dtype=torch.float32) * 0.05, requires_grad=True
            ),
        )
        self.register_parameter(
            "vert_opy",
            nn.Parameter(
                torch.ones(1, n_points, dtype=torch.float32), requires_grad=True
            ),
        )
        self.register_buffer(
            "cam_params",
            torch.tensor(
                [
                    [
                        np.sin(angle) * 35.0,
                        0.0,
                        30.0 - np.cos(angle) * 35.0,
                        0.0,
                        -angle,
                        0.0,
                        5.0,
                        2.0,
                    ]
                    for angle in [-1.5, -0.8, -0.4, -0.1, 0.1, 0.4, 0.8, 1.5]
                ],
                dtype=torch.float32,
            ),
        )
        self.renderer = Renderer(width, height, n_points)

    def forward(self, cam=None):
        if cam is None:
            cam = self.cam_params
            n_views = 8
        else:
            n_views = 1
        return self.renderer.forward(
            self.vert_pos.expand(n_views, -1, -1),
            self.vert_col.expand(n_views, -1, -1),
            self.vert_rad.expand(n_views, -1),
            cam,
            self.gamma,
            45.0,
        )


# Load reference.
ref = torch.stack(
    [
        torch.from_numpy(
            imageio.imread(
                "../../tests/pulsar/reference/examples_TestRenderer_test_multiview_%d.png"
                % idx
            )
        ).to(torch.float32)
        / 255.0
        for idx in range(8)
    ]
).to(device)
# Set up model.
model = SceneModel().to(device)
# Optimizer.
optimizer = optim.SGD(
    [
        {"params": [model.vert_col], "lr": 1e-1},
        {"params": [model.vert_rad], "lr": 1e-3},
        {"params": [model.vert_pos], "lr": 1e-3},
    ]
)

# For visualization.
angle = 0.0
print("Writing video to `%s`." % (path.abspath("multiview.avi")))
writer = imageio.get_writer("multiview.gif", format="gif", fps=25)

# Optimize.
for i in range(300):
    optimizer.zero_grad()
    result = model()
    # Visualize.
    result_im = (result.cpu().detach().numpy() * 255).astype(np.uint8)
    cv2.imshow("opt", result_im[0, :, :, ::-1])
    overlay_img = np.ascontiguousarray(
        ((result * 0.5 + ref * 0.5).cpu().detach().numpy() * 255).astype(np.uint8)[
            0, :, :, ::-1
        ]
    )
    overlay_img = cv2.putText(
        overlay_img,
        "Step %d" % (i),
        (10, 40),
        cv2.FONT_HERSHEY_SIMPLEX,
        1,
        (0, 0, 0),
        2,
        cv2.LINE_AA,
        False,
    )
    cv2.imshow("overlay", overlay_img)
    cv2.waitKey(1)
    # Update.
    loss = ((result - ref) ** 2).sum()
    print("loss {}: {}".format(i, loss.item()))
    loss.backward()
    optimizer.step()
    # Cleanup.
    with torch.no_grad():
        model.vert_col.data = torch.clamp(model.vert_col.data, 0.0, 1.0)
        # Remove points.
        model.vert_pos.data[model.vert_rad < 0.001, :] = -1000.0
        model.vert_rad.data[model.vert_rad < 0.001] = 0.0001
        vd = (
            (model.vert_col - torch.ones(1, 1, 3, dtype=torch.float32).to(device))
            .abs()
            .sum(dim=2)
        )
        model.vert_pos.data[vd <= 0.2] = -1000.0
    # Rotating visualization.
    cam_control = torch.tensor(
        [
            [
                np.sin(angle) * 35.0,
                0.0,
                30.0 - np.cos(angle) * 35.0,
                0.0,
                -angle,
                0.0,
                5.0,
                2.0,
            ]
        ],
        dtype=torch.float32,
    ).to(device)
    with torch.no_grad():
        result = model.forward(cam=cam_control)[0]
        result_im = (result.cpu().detach().numpy() * 255).astype(np.uint8)
        cv2.imshow("vis", result_im[:, :, ::-1])
        writer.append_data(result_im)
        angle += 0.05
writer.close()