pulsar_basic_unified.py 2.96 KB
Newer Older
Christoph Lassner's avatar
Christoph Lassner committed
1
#!/usr/bin/env python3
Patrick Labatut's avatar
Patrick Labatut committed
2
3
4
5
6
7
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

Christoph Lassner's avatar
Christoph Lassner committed
8
9
10
11
12
13
"""
This example demonstrates the most trivial use of the pulsar PyTorch3D
interface for sphere renderering. It renders and saves an image with
10 random spheres.
Output: basic-pt3d.png.
"""
Christoph Lassner's avatar
Christoph Lassner committed
14
import logging
Christoph Lassner's avatar
Christoph Lassner committed
15
16
17
18
19
from os import path

import imageio
import torch
from pytorch3d.renderer import (
20
    PerspectiveCameras,
Christoph Lassner's avatar
Christoph Lassner committed
21
22
23
24
25
26
27
    PointsRasterizationSettings,
    PointsRasterizer,
    PulsarPointsRenderer,
)
from pytorch3d.structures import Pointclouds


Christoph Lassner's avatar
Christoph Lassner committed
28
LOGGER = logging.getLogger(__name__)
Christoph Lassner's avatar
Christoph Lassner committed
29
30


Christoph Lassner's avatar
Christoph Lassner committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
def cli():
    """
    Basic example for the pulsar sphere renderer using the PyTorch3D interface.

    Writes to `basic-pt3d.png`.
    """
    LOGGER.info("Rendering on GPU...")
    torch.manual_seed(1)
    n_points = 10
    width = 1_000
    height = 1_000
    device = torch.device("cuda")
    # Generate sample data.
    vert_pos = torch.rand(n_points, 3, dtype=torch.float32, device=device) * 10.0
    vert_pos[:, 2] += 25.0
    vert_pos[:, :2] -= 5.0
    vert_col = torch.rand(n_points, 3, dtype=torch.float32, device=device)
    pcl = Pointclouds(points=vert_pos[None, ...], features=vert_col[None, ...])
    # Alternatively, you can also use the look_at_view_transform to get R and T:
    # R, T = look_at_view_transform(
    #     dist=30.0, elev=0.0, azim=180.0, at=((0.0, 0.0, 30.0),), up=((0, 1, 0),),
    # )
    cameras = PerspectiveCameras(
        # The focal length must be double the size for PyTorch3D because of the NDC
        # coordinates spanning a range of two - and they must be normalized by the
        # sensor width (see the pulsar example). This means we need here
        # 5.0 * 2.0 / 2.0 to get the equivalent results as in pulsar.
        focal_length=(5.0 * 2.0 / 2.0,),
        R=torch.eye(3, dtype=torch.float32, device=device)[None, ...],
        T=torch.zeros((1, 3), dtype=torch.float32, device=device),
Nikhila Ravi's avatar
Nikhila Ravi committed
61
        image_size=((height, width),),
Christoph Lassner's avatar
Christoph Lassner committed
62
63
64
65
        device=device,
    )
    vert_rad = torch.rand(n_points, dtype=torch.float32, device=device)
    raster_settings = PointsRasterizationSettings(
Nikhila Ravi's avatar
Nikhila Ravi committed
66
        image_size=(height, width),
Christoph Lassner's avatar
Christoph Lassner committed
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
        radius=vert_rad,
    )
    rasterizer = PointsRasterizer(cameras=cameras, raster_settings=raster_settings)
    renderer = PulsarPointsRenderer(rasterizer=rasterizer).to(device)
    # Render.
    image = renderer(
        pcl,
        gamma=(1.0e-1,),  # Renderer blending parameter gamma, in [1., 1e-5].
        znear=(1.0,),
        zfar=(45.0,),
        radius_world=True,
        bg_col=torch.ones((3,), dtype=torch.float32, device=device),
    )[0]
    LOGGER.info("Writing image to `%s`.", path.abspath("basic-pt3d.png"))
    imageio.imsave(
        "basic-pt3d.png", (image.cpu().detach() * 255.0).to(torch.uint8).numpy()
    )
    LOGGER.info("Done.")


if __name__ == "__main__":
    logging.basicConfig(level=logging.INFO)
    cli()