test_ray_point_refiner.py 2.46 KB
Newer Older
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1
2
3
4
5
6
7
8
9
10
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

import unittest

import torch
from pytorch3d.implicitron.models.renderer.ray_point_refiner import RayPointRefiner
Darijan Gudelj's avatar
Darijan Gudelj committed
11
from pytorch3d.implicitron.models.renderer.ray_sampler import ImplicitronRayBundle
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
12
from tests.common_testing import TestCaseMixin
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26


class TestRayPointRefiner(TestCaseMixin, unittest.TestCase):
    def test_simple(self):
        length = 15
        n_pts_per_ray = 10

        for add_input_samples in [False, True]:
            ray_point_refiner = RayPointRefiner(
                n_pts_per_ray=n_pts_per_ray,
                random_sampling=False,
                add_input_samples=add_input_samples,
            )
            lengths = torch.arange(length, dtype=torch.float32).expand(3, 25, length)
Darijan Gudelj's avatar
Darijan Gudelj committed
27
28
29
30
31
32
33
34
            bundle = ImplicitronRayBundle(
                lengths=lengths,
                origins=None,
                directions=None,
                xys=None,
                camera_ids=None,
                camera_counts=None,
            )
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
            weights = torch.ones(3, 25, length)
            refined = ray_point_refiner(bundle, weights)

            self.assertIsNone(refined.directions)
            self.assertIsNone(refined.origins)
            self.assertIsNone(refined.xys)
            expected = torch.linspace(0.5, length - 1.5, n_pts_per_ray)
            expected = expected.expand(3, 25, n_pts_per_ray)
            if add_input_samples:
                full_expected = torch.cat((lengths, expected), dim=-1).sort()[0]
            else:
                full_expected = expected
            self.assertClose(refined.lengths, full_expected)

            ray_point_refiner_random = RayPointRefiner(
                n_pts_per_ray=n_pts_per_ray,
                random_sampling=True,
                add_input_samples=add_input_samples,
            )
            refined_random = ray_point_refiner_random(bundle, weights)
            lengths_random = refined_random.lengths
            self.assertEqual(lengths_random.shape, full_expected.shape)
            if not add_input_samples:
                self.assertGreater(lengths_random.min().item(), 0.5)
                self.assertLess(lengths_random.max().item(), length - 1.5)

            # Check sorted
            self.assertTrue(
                (lengths_random[..., 1:] - lengths_random[..., :-1] > 0).all()
            )