test_meshes.py 47.2 KB
Newer Older
1
# Copyright (c) Meta Platforms, Inc. and affiliates.
Patrick Labatut's avatar
Patrick Labatut committed
2
3
4
5
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
facebook-github-bot's avatar
facebook-github-bot committed
6

7
import itertools
8
import random
facebook-github-bot's avatar
facebook-github-bot committed
9
10
import unittest

11
12
import numpy as np
import torch
facebook-github-bot's avatar
facebook-github-bot committed
13
from common_testing import TestCaseMixin
14
from pytorch3d.structures.meshes import Meshes
facebook-github-bot's avatar
facebook-github-bot committed
15
16


Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
def init_mesh(
    num_meshes: int = 10,
    max_v: int = 100,
    max_f: int = 300,
    lists_to_tensors: bool = False,
    device: str = "cpu",
    requires_grad: bool = False,
):
    """
    Function to generate a Meshes object of N meshes with
    random numbers of vertices and faces.

    Args:
        num_meshes: Number of meshes to generate.
        max_v: Max number of vertices per mesh.
        max_f: Max number of faces per mesh.
        lists_to_tensors: Determines whether the generated meshes should be
                            constructed from lists (=False) or
                            a tensor (=True) of faces/verts.

    Returns:
        Meshes object.
    """
    device = torch.device(device)

    verts_list = []
    faces_list = []

    # Randomly generate numbers of faces and vertices in each mesh.
    if lists_to_tensors:
        # If we define faces/verts with tensors, f/v has to be the
        # same for each mesh in the batch.
        f = torch.randint(1, max_f, size=(1,), dtype=torch.int32)
        v = torch.randint(3, high=max_v, size=(1,), dtype=torch.int32)
        f = f.repeat(num_meshes)
        v = v.repeat(num_meshes)
    else:
        # For lists of faces and vertices, we can sample different v/f
        # per mesh.
        f = torch.randint(max_f, size=(num_meshes,), dtype=torch.int32)
        v = torch.randint(3, high=max_v, size=(num_meshes,), dtype=torch.int32)

    # Generate the actual vertices and faces.
    for i in range(num_meshes):
        verts = torch.rand(
            (v[i], 3),
            dtype=torch.float32,
            device=device,
            requires_grad=requires_grad,
        )
        faces = torch.randint(v[i], size=(f[i], 3), dtype=torch.int64, device=device)
        verts_list.append(verts)
        faces_list.append(faces)
facebook-github-bot's avatar
facebook-github-bot committed
70

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
71
72
73
    if lists_to_tensors:
        verts_list = torch.stack(verts_list)
        faces_list = torch.stack(faces_list)
facebook-github-bot's avatar
facebook-github-bot committed
74

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
75
    return Meshes(verts=verts_list, faces=faces_list)
facebook-github-bot's avatar
facebook-github-bot committed
76
77


Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
78
79
80
def init_simple_mesh(device: str = "cpu"):
    """
    Returns a Meshes data structure of simple mesh examples.
facebook-github-bot's avatar
facebook-github-bot committed
81

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
82
83
84
85
    Returns:
        Meshes object.
    """
    device = torch.device(device)
facebook-github-bot's avatar
facebook-github-bot committed
86

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
    verts = [
        torch.tensor(
            [[0.1, 0.3, 0.5], [0.5, 0.2, 0.1], [0.6, 0.8, 0.7]],
            dtype=torch.float32,
            device=device,
        ),
        torch.tensor(
            [[0.1, 0.3, 0.3], [0.6, 0.7, 0.8], [0.2, 0.3, 0.4], [0.1, 0.5, 0.3]],
            dtype=torch.float32,
            device=device,
        ),
        torch.tensor(
            [
                [0.7, 0.3, 0.6],
                [0.2, 0.4, 0.8],
                [0.9, 0.5, 0.2],
                [0.2, 0.3, 0.4],
                [0.9, 0.3, 0.8],
            ],
            dtype=torch.float32,
            device=device,
        ),
    ]
    faces = [
        torch.tensor([[0, 1, 2]], dtype=torch.int64, device=device),
        torch.tensor([[0, 1, 2], [1, 2, 3]], dtype=torch.int64, device=device),
        torch.tensor(
            [
                [1, 2, 0],
                [0, 1, 3],
                [2, 3, 1],
                [4, 3, 2],
                [4, 0, 1],
                [4, 3, 1],
                [4, 2, 1],
            ],
            dtype=torch.int64,
            device=device,
        ),
    ]
    return Meshes(verts=verts, faces=faces)


class TestMeshes(TestCaseMixin, unittest.TestCase):
    def setUp(self) -> None:
        np.random.seed(42)
        torch.manual_seed(42)
facebook-github-bot's avatar
facebook-github-bot committed
134
135

    def test_simple(self):
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
136
        mesh = init_simple_mesh("cuda:0")
facebook-github-bot's avatar
facebook-github-bot committed
137

Nikhila Ravi's avatar
Nikhila Ravi committed
138
        # Check that faces/verts per mesh are set in init:
139
140
        self.assertClose(mesh._num_faces_per_mesh.cpu(), torch.tensor([1, 2, 7]))
        self.assertClose(mesh._num_verts_per_mesh.cpu(), torch.tensor([3, 4, 5]))
Nikhila Ravi's avatar
Nikhila Ravi committed
141
142

        # Check computed tensors
facebook-github-bot's avatar
facebook-github-bot committed
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
        self.assertClose(
            mesh.verts_packed_to_mesh_idx().cpu(),
            torch.tensor([0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2]),
        )
        self.assertClose(
            mesh.mesh_to_verts_packed_first_idx().cpu(), torch.tensor([0, 3, 7])
        )
        self.assertClose(
            mesh.verts_padded_to_packed_idx().cpu(),
            torch.tensor([0, 1, 2, 5, 6, 7, 8, 10, 11, 12, 13, 14]),
        )
        self.assertClose(
            mesh.faces_packed_to_mesh_idx().cpu(),
            torch.tensor([0, 1, 1, 2, 2, 2, 2, 2, 2, 2]),
        )
        self.assertClose(
            mesh.mesh_to_faces_packed_first_idx().cpu(), torch.tensor([0, 1, 3])
        )
        self.assertClose(
162
            mesh.num_edges_per_mesh().cpu(), torch.tensor([3, 5, 10], dtype=torch.int32)
facebook-github-bot's avatar
facebook-github-bot committed
163
        )
Georgia Gkioxari's avatar
Georgia Gkioxari committed
164
165
166
167
        self.assertClose(
            mesh.mesh_to_edges_packed_first_idx().cpu(),
            torch.tensor([0, 3, 8], dtype=torch.int64),
        )
facebook-github-bot's avatar
facebook-github-bot committed
168

169
170
171
172
    def test_init_error(self):
        # Check if correct errors are raised when verts/faces are on
        # different devices

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
173
        mesh = init_mesh(10, 10, 100)
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
        verts_list = mesh.verts_list()  # all tensors on cpu
        verts_list = [
            v.to("cuda:0") if random.uniform(0, 1) > 0.5 else v for v in verts_list
        ]
        faces_list = mesh.faces_list()

        with self.assertRaises(ValueError) as cm:
            Meshes(verts=verts_list, faces=faces_list)
            self.assertTrue("same device" in cm.msg)

        verts_padded = mesh.verts_padded()  # on cpu
        verts_padded = verts_padded.to("cuda:0")
        faces_padded = mesh.faces_padded()

        with self.assertRaises(ValueError) as cm:
            Meshes(verts=verts_padded, faces=faces_padded)
            self.assertTrue("same device" in cm.msg)

facebook-github-bot's avatar
facebook-github-bot committed
192
193
194
195
196
    def test_simple_random_meshes(self):

        # Define the test mesh object either as a list or tensor of faces/verts.
        for lists_to_tensors in (False, True):
            N = 10
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
197
            mesh = init_mesh(N, 100, 300, lists_to_tensors=lists_to_tensors)
facebook-github-bot's avatar
facebook-github-bot committed
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
            verts_list = mesh.verts_list()
            faces_list = mesh.faces_list()

            # Check batch calculations.
            verts_padded = mesh.verts_padded()
            faces_padded = mesh.faces_padded()
            verts_per_mesh = mesh.num_verts_per_mesh()
            faces_per_mesh = mesh.num_faces_per_mesh()
            for n in range(N):
                v = verts_list[n].shape[0]
                f = faces_list[n].shape[0]
                self.assertClose(verts_padded[n, :v, :], verts_list[n])
                if verts_padded.shape[1] > v:
                    self.assertTrue(verts_padded[n, v:, :].eq(0).all())
                self.assertClose(faces_padded[n, :f, :], faces_list[n])
                if faces_padded.shape[1] > f:
                    self.assertTrue(faces_padded[n, f:, :].eq(-1).all())
                self.assertEqual(verts_per_mesh[n], v)
                self.assertEqual(faces_per_mesh[n], f)

            # Check compute packed.
            verts_packed = mesh.verts_packed()
            vert_to_mesh = mesh.verts_packed_to_mesh_idx()
            mesh_to_vert = mesh.mesh_to_verts_packed_first_idx()
            faces_packed = mesh.faces_packed()
            face_to_mesh = mesh.faces_packed_to_mesh_idx()
            mesh_to_face = mesh.mesh_to_faces_packed_first_idx()

            curv, curf = 0, 0
            for n in range(N):
                v = verts_list[n].shape[0]
                f = faces_list[n].shape[0]
230
231
                self.assertClose(verts_packed[curv : curv + v, :], verts_list[n])
                self.assertClose(faces_packed[curf : curf + f, :] - curv, faces_list[n])
facebook-github-bot's avatar
facebook-github-bot committed
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
                self.assertTrue(vert_to_mesh[curv : curv + v].eq(n).all())
                self.assertTrue(face_to_mesh[curf : curf + f].eq(n).all())
                self.assertTrue(mesh_to_vert[n] == curv)
                self.assertTrue(mesh_to_face[n] == curf)
                curv += v
                curf += f

            # Check compute edges and compare with numpy unique.
            edges = mesh.edges_packed().cpu().numpy()
            edge_to_mesh_idx = mesh.edges_packed_to_mesh_idx().cpu().numpy()
            num_edges_per_mesh = mesh.num_edges_per_mesh().cpu().numpy()

            npfaces_packed = mesh.faces_packed().cpu().numpy()
            e01 = npfaces_packed[:, [0, 1]]
            e12 = npfaces_packed[:, [1, 2]]
            e20 = npfaces_packed[:, [2, 0]]
            npedges = np.concatenate((e12, e20, e01), axis=0)
            npedges = np.sort(npedges, axis=1)

251
            unique_edges, unique_idx = np.unique(npedges, return_index=True, axis=0)
facebook-github-bot's avatar
facebook-github-bot committed
252
253
254
255
256
257
258
            self.assertTrue(np.allclose(edges, unique_edges))
            temp = face_to_mesh.cpu().numpy()
            temp = np.concatenate((temp, temp, temp), axis=0)
            edge_to_mesh = temp[unique_idx]
            self.assertTrue(np.allclose(edge_to_mesh_idx, edge_to_mesh))
            num_edges = np.bincount(edge_to_mesh, minlength=N)
            self.assertTrue(np.allclose(num_edges_per_mesh, num_edges))
Georgia Gkioxari's avatar
Georgia Gkioxari committed
259
260
261
262
263
264
265
            mesh_to_edges_packed_first_idx = (
                mesh.mesh_to_edges_packed_first_idx().cpu().numpy()
            )
            self.assertTrue(
                np.allclose(mesh_to_edges_packed_first_idx[1:], num_edges.cumsum()[:-1])
            )
            self.assertTrue(mesh_to_edges_packed_first_idx[0] == 0)
facebook-github-bot's avatar
facebook-github-bot committed
266
267

    def test_allempty(self):
268
        mesh = Meshes(verts=[], faces=[])
facebook-github-bot's avatar
facebook-github-bot committed
269
270
271
272
273
        self.assertEqual(len(mesh), 0)
        self.assertEqual(mesh.verts_padded().shape[0], 0)
        self.assertEqual(mesh.faces_padded().shape[0], 0)
        self.assertEqual(mesh.verts_packed().shape[0], 0)
        self.assertEqual(mesh.faces_packed().shape[0], 0)
Nikhila Ravi's avatar
Nikhila Ravi committed
274
275
        self.assertEqual(mesh.num_faces_per_mesh().shape[0], 0)
        self.assertEqual(mesh.num_verts_per_mesh().shape[0], 0)
facebook-github-bot's avatar
facebook-github-bot committed
276
277
278
279
280
281
282
283
284
285
286
287

    def test_empty(self):
        N, V, F = 10, 100, 300
        device = torch.device("cuda:0")
        verts_list = []
        faces_list = []
        valid = torch.randint(2, size=(N,), dtype=torch.uint8, device=device)
        for n in range(N):
            if valid[n]:
                v = torch.randint(
                    3, high=V, size=(1,), dtype=torch.int32, device=device
                )[0]
288
                f = torch.randint(F, size=(1,), dtype=torch.int32, device=device)[0]
facebook-github-bot's avatar
facebook-github-bot committed
289
                verts = torch.rand((v, 3), dtype=torch.float32, device=device)
290
                faces = torch.randint(v, size=(f, 3), dtype=torch.int64, device=device)
facebook-github-bot's avatar
facebook-github-bot committed
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
            else:
                verts = torch.tensor([], dtype=torch.float32, device=device)
                faces = torch.tensor([], dtype=torch.int64, device=device)
            verts_list.append(verts)
            faces_list.append(faces)

        mesh = Meshes(verts=verts_list, faces=faces_list)
        verts_padded = mesh.verts_padded()
        faces_padded = mesh.faces_padded()
        verts_per_mesh = mesh.num_verts_per_mesh()
        faces_per_mesh = mesh.num_faces_per_mesh()
        for n in range(N):
            v = len(verts_list[n])
            f = len(faces_list[n])
            if v > 0:
                self.assertClose(verts_padded[n, :v, :], verts_list[n])
                if verts_padded.shape[1] > v:
                    self.assertTrue(verts_padded[n, v:, :].eq(0).all())
            if f > 0:
                self.assertClose(faces_padded[n, :f, :], faces_list[n])
                if faces_padded.shape[1] > f:
                    self.assertTrue(faces_padded[n, f:, :].eq(-1).all())
            self.assertTrue(verts_per_mesh[n] == v)
            self.assertTrue(faces_per_mesh[n] == f)

    def test_padding(self):
        N, V, F = 10, 100, 300
        device = torch.device("cuda:0")
        verts, faces = [], []
        valid = torch.randint(2, size=(N,), dtype=torch.uint8, device=device)
        num_verts, num_faces = (
            torch.zeros(N, dtype=torch.int32),
            torch.zeros(N, dtype=torch.int32),
        )
        for n in range(N):
            verts.append(torch.rand((V, 3), dtype=torch.float32, device=device))
327
            this_faces = torch.full((F, 3), -1, dtype=torch.int64, device=device)
facebook-github-bot's avatar
facebook-github-bot committed
328
329
330
331
            if valid[n]:
                v = torch.randint(
                    3, high=V, size=(1,), dtype=torch.int32, device=device
                )[0]
332
                f = torch.randint(F, size=(1,), dtype=torch.int32, device=device)[0]
facebook-github-bot's avatar
facebook-github-bot committed
333
334
335
336
337
338
339
340
341
                this_faces[:f, :] = torch.randint(
                    v, size=(f, 3), dtype=torch.int64, device=device
                )
                num_verts[n] = v
                num_faces[n] = f
            faces.append(this_faces)

        mesh = Meshes(verts=torch.stack(verts), faces=torch.stack(faces))

Nikhila Ravi's avatar
Nikhila Ravi committed
342
        # Check verts/faces per mesh are set correctly in init.
343
        self.assertListEqual(mesh._num_faces_per_mesh.tolist(), num_faces.tolist())
Nikhila Ravi's avatar
Nikhila Ravi committed
344
        self.assertListEqual(mesh._num_verts_per_mesh.tolist(), [V] * N)
facebook-github-bot's avatar
facebook-github-bot committed
345
346
347
348
349
350

        for n, (vv, ff) in enumerate(zip(mesh.verts_list(), mesh.faces_list())):
            self.assertClose(ff, faces[n][: num_faces[n]])
            self.assertClose(vv, verts[n])

        new_faces = [ff.clone() for ff in faces]
351
352
        v = torch.randint(3, high=V, size=(1,), dtype=torch.int32, device=device)[0]
        f = torch.randint(F - 10, size=(1,), dtype=torch.int32, device=device)[0]
facebook-github-bot's avatar
facebook-github-bot committed
353
354
355
356
357
358
359
360
361
362
363
        this_faces = torch.full((F, 3), -1, dtype=torch.int64, device=device)
        this_faces[10 : f + 10, :] = torch.randint(
            v, size=(f, 3), dtype=torch.int64, device=device
        )
        new_faces[3] = this_faces

        with self.assertRaisesRegex(ValueError, "Padding of faces"):
            Meshes(verts=torch.stack(verts), faces=torch.stack(new_faces))

    def test_clone(self):
        N = 5
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
364
        mesh = init_mesh(N, 10, 100)
facebook-github-bot's avatar
facebook-github-bot committed
365
366
367
368
369
370
371
372
373
374
375
        for force in [0, 1]:
            if force:
                # force mesh to have computed attributes
                mesh.verts_packed()
                mesh.edges_packed()
                mesh.verts_padded()

            new_mesh = mesh.clone()

            # Modify tensors in both meshes.
            new_mesh._verts_list[0] = new_mesh._verts_list[0] * 5
Georgia Gkioxari's avatar
Georgia Gkioxari committed
376

facebook-github-bot's avatar
facebook-github-bot committed
377
378
379
380
381
382
383
384
385
386
            # Check cloned and original Meshes objects do not share tensors.
            self.assertFalse(
                torch.allclose(new_mesh._verts_list[0], mesh._verts_list[0])
            )
            self.assertSeparate(new_mesh.verts_packed(), mesh.verts_packed())
            self.assertSeparate(new_mesh.verts_padded(), mesh.verts_padded())
            self.assertSeparate(new_mesh.faces_packed(), mesh.faces_packed())
            self.assertSeparate(new_mesh.faces_padded(), mesh.faces_padded())
            self.assertSeparate(new_mesh.edges_packed(), mesh.edges_packed())

387
388
    def test_detach(self):
        N = 5
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
389
        mesh = init_mesh(N, 10, 100, requires_grad=True)
390
391
392
393
394
395
396
397
398
399
400
        for force in [0, 1]:
            if force:
                # force mesh to have computed attributes
                mesh.verts_packed()
                mesh.edges_packed()
                mesh.verts_padded()

            new_mesh = mesh.detach()

            self.assertFalse(new_mesh.verts_packed().requires_grad)
            self.assertClose(new_mesh.verts_packed(), mesh.verts_packed())
401
            self.assertFalse(new_mesh.verts_padded().requires_grad)
402
403
            self.assertClose(new_mesh.verts_padded(), mesh.verts_padded())
            for v, newv in zip(mesh.verts_list(), new_mesh.verts_list()):
404
                self.assertFalse(newv.requires_grad)
405
406
                self.assertClose(newv, v)

facebook-github-bot's avatar
facebook-github-bot committed
407
408
409
410
411
412
413
414
415
416
417
    def test_offset_verts(self):
        def naive_offset_verts(mesh, vert_offsets_packed):
            # new Meshes class
            new_verts_packed = mesh.verts_packed() + vert_offsets_packed
            new_verts_list = list(
                new_verts_packed.split(mesh.num_verts_per_mesh().tolist(), 0)
            )
            new_faces_list = [f.clone() for f in mesh.faces_list()]
            return Meshes(verts=new_verts_list, faces=new_faces_list)

        N = 5
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
418
        mesh = init_mesh(N, 30, 100, lists_to_tensors=True)
facebook-github-bot's avatar
facebook-github-bot committed
419
420
        all_v = mesh.verts_packed().size(0)
        verts_per_mesh = mesh.num_verts_per_mesh()
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
421
        for force, deform_shape in itertools.product([False, True], [(all_v, 3), 3]):
facebook-github-bot's avatar
facebook-github-bot committed
422
423
424
425
426
427
428
429
430
            if force:
                # force mesh to have computed attributes
                mesh._compute_packed(refresh=True)
                mesh._compute_padded()
                mesh._compute_edges_packed()
                mesh.verts_padded_to_packed_idx()
                mesh._compute_face_areas_normals(refresh=True)
                mesh._compute_vertex_normals(refresh=True)

431
            deform = torch.rand(deform_shape, dtype=torch.float32, device=mesh.device)
facebook-github-bot's avatar
facebook-github-bot committed
432
433
434
435
436
437
438
439
440
            # new meshes class to hold the deformed mesh
            new_mesh_naive = naive_offset_verts(mesh, deform)

            new_mesh = mesh.offset_verts(deform)

            # check verts_list & faces_list
            verts_cumsum = torch.cumsum(verts_per_mesh, 0).tolist()
            verts_cumsum.insert(0, 0)
            for i in range(N):
441
442
443
444
445
                item_offset = (
                    deform
                    if deform.ndim == 1
                    else deform[verts_cumsum[i] : verts_cumsum[i + 1]]
                )
facebook-github-bot's avatar
facebook-github-bot committed
446
447
                self.assertClose(
                    new_mesh.verts_list()[i],
448
                    mesh.verts_list()[i] + item_offset,
facebook-github-bot's avatar
facebook-github-bot committed
449
450
451
452
                )
                self.assertClose(
                    new_mesh.verts_list()[i], new_mesh_naive.verts_list()[i]
                )
453
                self.assertClose(mesh.faces_list()[i], new_mesh_naive.faces_list()[i])
facebook-github-bot's avatar
facebook-github-bot committed
454
455
456
                self.assertClose(
                    new_mesh.faces_list()[i], new_mesh_naive.faces_list()[i]
                )
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
457

facebook-github-bot's avatar
facebook-github-bot committed
458
459
460
461
                # check faces and vertex normals
                self.assertClose(
                    new_mesh.verts_normals_list()[i],
                    new_mesh_naive.verts_normals_list()[i],
462
                    atol=1e-6,
facebook-github-bot's avatar
facebook-github-bot committed
463
464
465
466
                )
                self.assertClose(
                    new_mesh.faces_normals_list()[i],
                    new_mesh_naive.faces_normals_list()[i],
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
467
                    atol=1e-6,
facebook-github-bot's avatar
facebook-github-bot committed
468
469
470
                )

            # check padded & packed
471
472
473
474
475
            self.assertClose(new_mesh.faces_padded(), new_mesh_naive.faces_padded())
            self.assertClose(new_mesh.verts_padded(), new_mesh_naive.verts_padded())
            self.assertClose(new_mesh.faces_packed(), new_mesh_naive.faces_packed())
            self.assertClose(new_mesh.verts_packed(), new_mesh_naive.verts_packed())
            self.assertClose(new_mesh.edges_packed(), new_mesh_naive.edges_packed())
facebook-github-bot's avatar
facebook-github-bot committed
476
477
478
479
480
481
482
483
484
            self.assertClose(
                new_mesh.verts_packed_to_mesh_idx(),
                new_mesh_naive.verts_packed_to_mesh_idx(),
            )
            self.assertClose(
                new_mesh.mesh_to_verts_packed_first_idx(),
                new_mesh_naive.mesh_to_verts_packed_first_idx(),
            )
            self.assertClose(
485
                new_mesh.num_verts_per_mesh(), new_mesh_naive.num_verts_per_mesh()
facebook-github-bot's avatar
facebook-github-bot committed
486
487
488
489
490
491
492
493
494
495
            )
            self.assertClose(
                new_mesh.faces_packed_to_mesh_idx(),
                new_mesh_naive.faces_packed_to_mesh_idx(),
            )
            self.assertClose(
                new_mesh.mesh_to_faces_packed_first_idx(),
                new_mesh_naive.mesh_to_faces_packed_first_idx(),
            )
            self.assertClose(
496
                new_mesh.num_faces_per_mesh(), new_mesh_naive.num_faces_per_mesh()
facebook-github-bot's avatar
facebook-github-bot committed
497
498
499
500
501
502
503
504
505
506
507
508
509
510
            )
            self.assertClose(
                new_mesh.edges_packed_to_mesh_idx(),
                new_mesh_naive.edges_packed_to_mesh_idx(),
            )
            self.assertClose(
                new_mesh.verts_padded_to_packed_idx(),
                new_mesh_naive.verts_padded_to_packed_idx(),
            )
            self.assertTrue(all(new_mesh.valid == new_mesh_naive.valid))
            self.assertTrue(new_mesh.equisized == new_mesh_naive.equisized)

            # check face areas, normals and vertex normals
            self.assertClose(
511
512
513
                new_mesh.verts_normals_packed(),
                new_mesh_naive.verts_normals_packed(),
                atol=1e-6,
facebook-github-bot's avatar
facebook-github-bot committed
514
515
            )
            self.assertClose(
516
517
518
                new_mesh.verts_normals_padded(),
                new_mesh_naive.verts_normals_padded(),
                atol=1e-6,
facebook-github-bot's avatar
facebook-github-bot committed
519
520
            )
            self.assertClose(
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
521
522
523
                new_mesh.faces_normals_packed(),
                new_mesh_naive.faces_normals_packed(),
                atol=1e-6,
facebook-github-bot's avatar
facebook-github-bot committed
524
525
            )
            self.assertClose(
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
526
527
528
                new_mesh.faces_normals_padded(),
                new_mesh_naive.faces_normals_padded(),
                atol=1e-6,
facebook-github-bot's avatar
facebook-github-bot committed
529
530
            )
            self.assertClose(
531
                new_mesh.faces_areas_packed(), new_mesh_naive.faces_areas_packed()
facebook-github-bot's avatar
facebook-github-bot committed
532
            )
Georgia Gkioxari's avatar
Georgia Gkioxari committed
533
534
535
536
            self.assertClose(
                new_mesh.mesh_to_edges_packed_first_idx(),
                new_mesh_naive.mesh_to_edges_packed_first_idx(),
            )
facebook-github-bot's avatar
facebook-github-bot committed
537
538
539
540
541
542
543
544
545
546
547
548
549
550

    def test_scale_verts(self):
        def naive_scale_verts(mesh, scale):
            if not torch.is_tensor(scale):
                scale = torch.ones(len(mesh)).mul_(scale)
            # new Meshes class
            new_verts_list = [
                scale[i] * v.clone() for (i, v) in enumerate(mesh.verts_list())
            ]
            new_faces_list = [f.clone() for f in mesh.faces_list()]
            return Meshes(verts=new_verts_list, faces=new_faces_list)

        N = 5
        for test in ["tensor", "scalar"]:
Georgia Gkioxari's avatar
Georgia Gkioxari committed
551
            for force in (False, True):
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
552
                mesh = init_mesh(N, 10, 100, lists_to_tensors=True)
facebook-github-bot's avatar
facebook-github-bot committed
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
                if force:
                    # force mesh to have computed attributes
                    mesh.verts_packed()
                    mesh.edges_packed()
                    mesh.verts_padded()
                    mesh._compute_face_areas_normals(refresh=True)
                    mesh._compute_vertex_normals(refresh=True)

                if test == "tensor":
                    scales = torch.rand(N)
                elif test == "scalar":
                    scales = torch.rand(1)[0].item()
                new_mesh_naive = naive_scale_verts(mesh, scales)
                new_mesh = mesh.scale_verts(scales)
                for i in range(N):
                    if test == "tensor":
                        self.assertClose(
570
                            scales[i] * mesh.verts_list()[i], new_mesh.verts_list()[i]
facebook-github-bot's avatar
facebook-github-bot committed
571
572
573
                        )
                    else:
                        self.assertClose(
574
                            scales * mesh.verts_list()[i], new_mesh.verts_list()[i]
facebook-github-bot's avatar
facebook-github-bot committed
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
                        )
                    self.assertClose(
                        new_mesh.verts_list()[i], new_mesh_naive.verts_list()[i]
                    )
                    self.assertClose(
                        mesh.faces_list()[i], new_mesh_naive.faces_list()[i]
                    )
                    self.assertClose(
                        new_mesh.faces_list()[i], new_mesh_naive.faces_list()[i]
                    )
                    # check face and vertex normals
                    self.assertClose(
                        new_mesh.verts_normals_list()[i],
                        new_mesh_naive.verts_normals_list()[i],
                    )
                    self.assertClose(
                        new_mesh.faces_normals_list()[i],
                        new_mesh_naive.faces_normals_list()[i],
                    )

                # check padded & packed
596
597
598
599
600
                self.assertClose(new_mesh.faces_padded(), new_mesh_naive.faces_padded())
                self.assertClose(new_mesh.verts_padded(), new_mesh_naive.verts_padded())
                self.assertClose(new_mesh.faces_packed(), new_mesh_naive.faces_packed())
                self.assertClose(new_mesh.verts_packed(), new_mesh_naive.verts_packed())
                self.assertClose(new_mesh.edges_packed(), new_mesh_naive.edges_packed())
facebook-github-bot's avatar
facebook-github-bot committed
601
602
603
604
605
606
607
608
609
                self.assertClose(
                    new_mesh.verts_packed_to_mesh_idx(),
                    new_mesh_naive.verts_packed_to_mesh_idx(),
                )
                self.assertClose(
                    new_mesh.mesh_to_verts_packed_first_idx(),
                    new_mesh_naive.mesh_to_verts_packed_first_idx(),
                )
                self.assertClose(
610
                    new_mesh.num_verts_per_mesh(), new_mesh_naive.num_verts_per_mesh()
facebook-github-bot's avatar
facebook-github-bot committed
611
612
613
614
615
616
617
618
619
620
                )
                self.assertClose(
                    new_mesh.faces_packed_to_mesh_idx(),
                    new_mesh_naive.faces_packed_to_mesh_idx(),
                )
                self.assertClose(
                    new_mesh.mesh_to_faces_packed_first_idx(),
                    new_mesh_naive.mesh_to_faces_packed_first_idx(),
                )
                self.assertClose(
621
                    new_mesh.num_faces_per_mesh(), new_mesh_naive.num_faces_per_mesh()
facebook-github-bot's avatar
facebook-github-bot committed
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
                )
                self.assertClose(
                    new_mesh.edges_packed_to_mesh_idx(),
                    new_mesh_naive.edges_packed_to_mesh_idx(),
                )
                self.assertClose(
                    new_mesh.verts_padded_to_packed_idx(),
                    new_mesh_naive.verts_padded_to_packed_idx(),
                )
                self.assertTrue(all(new_mesh.valid == new_mesh_naive.valid))
                self.assertTrue(new_mesh.equisized == new_mesh_naive.equisized)

                # check face areas, normals and vertex normals
                self.assertClose(
                    new_mesh.verts_normals_packed(),
                    new_mesh_naive.verts_normals_packed(),
                )
                self.assertClose(
                    new_mesh.verts_normals_padded(),
                    new_mesh_naive.verts_normals_padded(),
                )
                self.assertClose(
                    new_mesh.faces_normals_packed(),
                    new_mesh_naive.faces_normals_packed(),
                )
                self.assertClose(
                    new_mesh.faces_normals_padded(),
                    new_mesh_naive.faces_normals_padded(),
                )
                self.assertClose(
652
                    new_mesh.faces_areas_packed(), new_mesh_naive.faces_areas_packed()
facebook-github-bot's avatar
facebook-github-bot committed
653
                )
Georgia Gkioxari's avatar
Georgia Gkioxari committed
654
655
656
657
                self.assertClose(
                    new_mesh.mesh_to_edges_packed_first_idx(),
                    new_mesh_naive.mesh_to_edges_packed_first_idx(),
                )
facebook-github-bot's avatar
facebook-github-bot committed
658
659
660

    def test_extend_list(self):
        N = 10
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
661
        mesh = init_mesh(5, 10, 100)
facebook-github-bot's avatar
facebook-github-bot committed
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
        for force in [0, 1]:
            if force:
                # force some computes to happen
                mesh._compute_packed(refresh=True)
                mesh._compute_padded()
                mesh._compute_edges_packed()
                mesh.verts_padded_to_packed_idx()
            new_mesh = mesh.extend(N)
            self.assertEqual(len(mesh) * 10, len(new_mesh))
            for i in range(len(mesh)):
                for n in range(N):
                    self.assertClose(
                        mesh.verts_list()[i], new_mesh.verts_list()[i * N + n]
                    )
                    self.assertClose(
                        mesh.faces_list()[i], new_mesh.faces_list()[i * N + n]
                    )
                    self.assertTrue(mesh.valid[i] == new_mesh.valid[i * N + n])
            self.assertAllSeparate(
                mesh.verts_list()
                + new_mesh.verts_list()
                + mesh.faces_list()
                + new_mesh.faces_list()
            )
            self.assertTrue(new_mesh._verts_packed is None)
            self.assertTrue(new_mesh._faces_packed is None)
            self.assertTrue(new_mesh._verts_padded is None)
            self.assertTrue(new_mesh._faces_padded is None)
            self.assertTrue(new_mesh._edges_packed is None)

        with self.assertRaises(ValueError):
            mesh.extend(N=-1)

    def test_to(self):
696
697
698
699
700
701
702
703
704
705
706
707
708
709
        mesh = init_mesh(5, 10, 100)

        cpu_device = torch.device("cpu")

        converted_mesh = mesh.to("cpu")
        self.assertEqual(cpu_device, converted_mesh.device)
        self.assertEqual(cpu_device, mesh.device)
        self.assertIs(mesh, converted_mesh)

        converted_mesh = mesh.to(cpu_device)
        self.assertEqual(cpu_device, converted_mesh.device)
        self.assertEqual(cpu_device, mesh.device)
        self.assertIs(mesh, converted_mesh)

710
        cuda_device = torch.device("cuda:0")
711

712
        converted_mesh = mesh.to("cuda:0")
713
714
715
        self.assertEqual(cuda_device, converted_mesh.device)
        self.assertEqual(cpu_device, mesh.device)
        self.assertIsNot(mesh, converted_mesh)
facebook-github-bot's avatar
facebook-github-bot committed
716

717
718
719
720
        converted_mesh = mesh.to(cuda_device)
        self.assertEqual(cuda_device, converted_mesh.device)
        self.assertEqual(cpu_device, mesh.device)
        self.assertIsNot(mesh, converted_mesh)
facebook-github-bot's avatar
facebook-github-bot committed
721
722

    def test_split_mesh(self):
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
723
        mesh = init_mesh(5, 10, 100)
facebook-github-bot's avatar
facebook-github-bot committed
724
725
726
727
728
        split_sizes = [2, 3]
        split_meshes = mesh.split(split_sizes)
        self.assertTrue(len(split_meshes[0]) == 2)
        self.assertTrue(
            split_meshes[0].verts_list()
729
            == [mesh.get_mesh_verts_faces(0)[0], mesh.get_mesh_verts_faces(1)[0]]
facebook-github-bot's avatar
facebook-github-bot committed
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
        )
        self.assertTrue(len(split_meshes[1]) == 3)
        self.assertTrue(
            split_meshes[1].verts_list()
            == [
                mesh.get_mesh_verts_faces(2)[0],
                mesh.get_mesh_verts_faces(3)[0],
                mesh.get_mesh_verts_faces(4)[0],
            ]
        )

        split_sizes = [2, 0.3]
        with self.assertRaises(ValueError):
            mesh.split(split_sizes)

Georgia Gkioxari's avatar
Georgia Gkioxari committed
745
746
747
748
749
    def test_update_padded(self):
        # Define the test mesh object either as a list or tensor of faces/verts.
        N = 10
        for lists_to_tensors in (False, True):
            for force in (True, False):
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
750
                mesh = init_mesh(N, 100, 300, lists_to_tensors=lists_to_tensors)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
                num_verts_per_mesh = mesh.num_verts_per_mesh()
                if force:
                    # force mesh to have computed attributes
                    mesh.verts_packed()
                    mesh.edges_packed()
                    mesh.laplacian_packed()
                    mesh.faces_areas_packed()

                new_verts = torch.rand((mesh._N, mesh._V, 3), device=mesh.device)
                new_verts_list = [
                    new_verts[i, : num_verts_per_mesh[i]] for i in range(N)
                ]
                new_mesh = mesh.update_padded(new_verts)

                # check the attributes assigned at construction time
                self.assertEqual(new_mesh._N, mesh._N)
                self.assertEqual(new_mesh._F, mesh._F)
                self.assertEqual(new_mesh._V, mesh._V)
                self.assertEqual(new_mesh.equisized, mesh.equisized)
                self.assertTrue(all(new_mesh.valid == mesh.valid))
                self.assertNotSeparate(
                    new_mesh.num_verts_per_mesh(), mesh.num_verts_per_mesh()
                )
                self.assertClose(
                    new_mesh.num_verts_per_mesh(), mesh.num_verts_per_mesh()
                )
                self.assertNotSeparate(
                    new_mesh.num_faces_per_mesh(), mesh.num_faces_per_mesh()
                )
                self.assertClose(
                    new_mesh.num_faces_per_mesh(), mesh.num_faces_per_mesh()
                )

                # check that the following attributes are not assigned
                self.assertIsNone(new_mesh._verts_list)
                self.assertIsNone(new_mesh._faces_areas_packed)
                self.assertIsNone(new_mesh._faces_normals_packed)
                self.assertIsNone(new_mesh._verts_normals_packed)

                check_tensors = [
                    "_faces_packed",
                    "_verts_packed_to_mesh_idx",
                    "_faces_packed_to_mesh_idx",
                    "_mesh_to_verts_packed_first_idx",
                    "_mesh_to_faces_packed_first_idx",
                    "_edges_packed",
                    "_edges_packed_to_mesh_idx",
                    "_mesh_to_edges_packed_first_idx",
                    "_faces_packed_to_edges_packed",
                    "_num_edges_per_mesh",
                ]
                for k in check_tensors:
                    v = getattr(new_mesh, k)
                    if not force:
                        self.assertIsNone(v)
                    else:
                        v_old = getattr(mesh, k)
                        self.assertNotSeparate(v, v_old)
                        self.assertClose(v, v_old)

                # check verts/faces padded
                self.assertClose(new_mesh.verts_padded(), new_verts)
                self.assertNotSeparate(new_mesh.verts_padded(), new_verts)
                self.assertClose(new_mesh.faces_padded(), mesh.faces_padded())
                self.assertNotSeparate(new_mesh.faces_padded(), mesh.faces_padded())
                # check verts/faces list
                for i in range(N):
                    self.assertNotSeparate(
                        new_mesh.faces_list()[i], mesh.faces_list()[i]
                    )
                    self.assertClose(new_mesh.faces_list()[i], mesh.faces_list()[i])
                    self.assertSeparate(new_mesh.verts_list()[i], mesh.verts_list()[i])
                    self.assertClose(new_mesh.verts_list()[i], new_verts_list[i])
                # check verts/faces packed
                self.assertClose(new_mesh.verts_packed(), torch.cat(new_verts_list))
                self.assertSeparate(new_mesh.verts_packed(), mesh.verts_packed())
                self.assertClose(new_mesh.faces_packed(), mesh.faces_packed())
                # check pad_to_packed
                self.assertClose(
                    new_mesh.verts_padded_to_packed_idx(),
                    mesh.verts_padded_to_packed_idx(),
                )
                # check edges
                self.assertClose(new_mesh.edges_packed(), mesh.edges_packed())

facebook-github-bot's avatar
facebook-github-bot committed
836
837
838
839
840
841
842
    def test_get_mesh_verts_faces(self):
        device = torch.device("cuda:0")
        verts_list = []
        faces_list = []
        verts_faces = [(10, 100), (20, 200)]
        for (V, F) in verts_faces:
            verts = torch.rand((V, 3), dtype=torch.float32, device=device)
843
            faces = torch.randint(V, size=(F, 3), dtype=torch.int64, device=device)
facebook-github-bot's avatar
facebook-github-bot committed
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
            verts_list.append(verts)
            faces_list.append(faces)

        mesh = Meshes(verts=verts_list, faces=faces_list)

        for i, (V, F) in enumerate(verts_faces):
            verts, faces = mesh.get_mesh_verts_faces(i)
            self.assertTrue(len(verts) == V)
            self.assertClose(verts, verts_list[i])
            self.assertTrue(len(faces) == F)
            self.assertClose(faces, faces_list[i])

        with self.assertRaises(ValueError):
            mesh.get_mesh_verts_faces(5)
        with self.assertRaises(ValueError):
            mesh.get_mesh_verts_faces(0.2)

    def test_get_bounding_boxes(self):
        device = torch.device("cuda:0")
        verts_list = []
        faces_list = []
        for (V, F) in [(10, 100)]:
            verts = torch.rand((V, 3), dtype=torch.float32, device=device)
867
            faces = torch.randint(V, size=(F, 3), dtype=torch.int64, device=device)
facebook-github-bot's avatar
facebook-github-bot committed
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
            verts_list.append(verts)
            faces_list.append(faces)

        mins = torch.min(verts, dim=0)[0]
        maxs = torch.max(verts, dim=0)[0]
        bboxes_gt = torch.stack([mins, maxs], dim=1).unsqueeze(0)
        mesh = Meshes(verts=verts_list, faces=faces_list)
        bboxes = mesh.get_bounding_boxes()
        self.assertClose(bboxes_gt, bboxes)

    def test_padded_to_packed_idx(self):
        device = torch.device("cuda:0")
        verts_list = []
        faces_list = []
        verts_faces = [(10, 100), (20, 200), (30, 300)]
        for (V, F) in verts_faces:
            verts = torch.rand((V, 3), dtype=torch.float32, device=device)
885
            faces = torch.randint(V, size=(F, 3), dtype=torch.int64, device=device)
facebook-github-bot's avatar
facebook-github-bot committed
886
887
888
889
890
891
892
893
894
            verts_list.append(verts)
            faces_list.append(faces)

        mesh = Meshes(verts=verts_list, faces=faces_list)
        verts_padded_to_packed_idx = mesh.verts_padded_to_packed_idx()
        verts_packed = mesh.verts_packed()
        verts_padded = mesh.verts_padded()
        verts_padded_flat = verts_padded.view(-1, 3)

895
        self.assertClose(verts_padded_flat[verts_padded_to_packed_idx], verts_packed)
facebook-github-bot's avatar
facebook-github-bot committed
896
897
898
899
900
901
902
903
904
905
906

        idx = verts_padded_to_packed_idx.view(-1, 1).expand(-1, 3)
        self.assertClose(verts_padded_flat.gather(0, idx), verts_packed)

    def test_getitem(self):
        device = torch.device("cuda:0")
        verts_list = []
        faces_list = []
        verts_faces = [(10, 100), (20, 200), (30, 300)]
        for (V, F) in verts_faces:
            verts = torch.rand((V, 3), dtype=torch.float32, device=device)
907
            faces = torch.randint(V, size=(F, 3), dtype=torch.int64, device=device)
facebook-github-bot's avatar
facebook-github-bot committed
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
            verts_list.append(verts)
            faces_list.append(faces)

        mesh = Meshes(verts=verts_list, faces=faces_list)

        def check_equal(selected, indices):
            for selectedIdx, index in enumerate(indices):
                self.assertClose(
                    selected.verts_list()[selectedIdx], mesh.verts_list()[index]
                )
                self.assertClose(
                    selected.faces_list()[selectedIdx], mesh.faces_list()[index]
                )

        # int index
        index = 1
        mesh_selected = mesh[index]
        self.assertTrue(len(mesh_selected) == 1)
        check_equal(mesh_selected, [index])

        # list index
        index = [1, 2]
        mesh_selected = mesh[index]
        self.assertTrue(len(mesh_selected) == len(index))
        check_equal(mesh_selected, index)

        # slice index
        index = slice(0, 2, 1)
        mesh_selected = mesh[index]
        check_equal(mesh_selected, [0, 1])

        # bool tensor
        index = torch.tensor([1, 0, 1], dtype=torch.bool, device=device)
        mesh_selected = mesh[index]
        self.assertTrue(len(mesh_selected) == index.sum())
        check_equal(mesh_selected, [0, 2])

        # int tensor
        index = torch.tensor([1, 2], dtype=torch.int64, device=device)
        mesh_selected = mesh[index]
        self.assertTrue(len(mesh_selected) == index.numel())
        check_equal(mesh_selected, index.tolist())

        # invalid index
        index = torch.tensor([1, 0, 1], dtype=torch.float32, device=device)
        with self.assertRaises(IndexError):
            mesh_selected = mesh[index]
        index = 1.2
        with self.assertRaises(IndexError):
            mesh_selected = mesh[index]

    def test_compute_faces_areas(self):
        verts = torch.tensor(
            [
                [0.0, 0.0, 0.0],
                [0.5, 0.0, 0.0],
                [0.5, 0.5, 0.0],
                [0.5, 0.0, 0.0],
                [0.25, 0.8, 0.0],
            ],
            dtype=torch.float32,
        )
        faces = torch.tensor([[0, 1, 2], [0, 3, 4]], dtype=torch.int64)
        mesh = Meshes(verts=[verts], faces=[faces])

        face_areas = mesh.faces_areas_packed()
        expected_areas = torch.tensor([0.125, 0.2])
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
975
        self.assertClose(face_areas, expected_areas)
facebook-github-bot's avatar
facebook-github-bot committed
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000

    def test_compute_normals(self):

        # Simple case with one mesh where normals point in either +/- ijk
        verts = torch.tensor(
            [
                [0.1, 0.3, 0.0],
                [0.5, 0.2, 0.0],
                [0.6, 0.8, 0.0],
                [0.0, 0.3, 0.2],
                [0.0, 0.2, 0.5],
                [0.0, 0.8, 0.7],
                [0.5, 0.0, 0.2],
                [0.6, 0.0, 0.5],
                [0.8, 0.0, 0.7],
                [0.0, 0.0, 0.0],
                [0.0, 0.0, 0.0],
                [0.0, 0.0, 0.0],
            ],
            dtype=torch.float32,
        )
        faces = torch.tensor(
            [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11]], dtype=torch.int64
        )
        mesh = Meshes(verts=[verts], faces=[faces])
1001
        self.assertFalse(mesh.has_verts_normals())
facebook-github-bot's avatar
facebook-github-bot committed
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
        verts_normals_expected = torch.tensor(
            [
                [0.0, 0.0, 1.0],
                [0.0, 0.0, 1.0],
                [0.0, 0.0, 1.0],
                [-1.0, 0.0, 0.0],
                [-1.0, 0.0, 0.0],
                [-1.0, 0.0, 0.0],
                [0.0, 1.0, 0.0],
                [0.0, 1.0, 0.0],
                [0.0, 1.0, 0.0],
                [0.0, 0.0, 0.0],
                [0.0, 0.0, 0.0],
                [0.0, 0.0, 0.0],
            ]
        )
        faces_normals_expected = verts_normals_expected[[0, 3, 6, 9], :]

        self.assertTrue(
            torch.allclose(mesh.verts_normals_list()[0], verts_normals_expected)
        )
1023
        self.assertTrue(mesh.has_verts_normals())
facebook-github-bot's avatar
facebook-github-bot committed
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
        self.assertTrue(
            torch.allclose(mesh.faces_normals_list()[0], faces_normals_expected)
        )
        self.assertTrue(
            torch.allclose(mesh.verts_normals_packed(), verts_normals_expected)
        )
        self.assertTrue(
            torch.allclose(mesh.faces_normals_packed(), faces_normals_expected)
        )

        # Multiple meshes in the batch with equal sized meshes
        meshes_extended = mesh.extend(3)
        for m in meshes_extended.verts_normals_list():
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1037
            self.assertClose(m, verts_normals_expected)
facebook-github-bot's avatar
facebook-github-bot committed
1038
        for f in meshes_extended.faces_normals_list():
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1039
            self.assertClose(f, faces_normals_expected)
facebook-github-bot's avatar
facebook-github-bot committed
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083

        # Multiple meshes in the batch with different sized meshes
        # Check padded and packed normals are the correct sizes.
        verts2 = torch.tensor(
            [
                [0.1, 0.3, 0.0],
                [0.5, 0.2, 0.0],
                [0.6, 0.8, 0.0],
                [0.0, 0.3, 0.2],
                [0.0, 0.2, 0.5],
                [0.0, 0.8, 0.7],
            ],
            dtype=torch.float32,
        )
        faces2 = torch.tensor([[0, 1, 2], [3, 4, 5]], dtype=torch.int64)
        verts_list = [verts, verts2]
        faces_list = [faces, faces2]
        meshes = Meshes(verts=verts_list, faces=faces_list)
        verts_normals_padded = meshes.verts_normals_padded()
        faces_normals_padded = meshes.faces_normals_padded()

        for n in range(len(meshes)):
            v = verts_list[n].shape[0]
            f = faces_list[n].shape[0]
            if verts_normals_padded.shape[1] > v:
                self.assertTrue(verts_normals_padded[n, v:, :].eq(0).all())
                self.assertTrue(
                    torch.allclose(
                        verts_normals_padded[n, :v, :].view(-1, 3),
                        verts_normals_expected[:v, :],
                    )
                )
            if faces_normals_padded.shape[1] > f:
                self.assertTrue(faces_normals_padded[n, f:, :].eq(0).all())
                self.assertTrue(
                    torch.allclose(
                        faces_normals_padded[n, :f, :].view(-1, 3),
                        faces_normals_expected[:f, :],
                    )
                )

        verts_normals_packed = meshes.verts_normals_packed()
        faces_normals_packed = meshes.faces_normals_packed()
        self.assertTrue(
1084
            list(verts_normals_packed.shape) == [verts.shape[0] + verts2.shape[0], 3]
facebook-github-bot's avatar
facebook-github-bot committed
1085
1086
        )
        self.assertTrue(
1087
            list(faces_normals_packed.shape) == [faces.shape[0] + faces2.shape[0], 3]
facebook-github-bot's avatar
facebook-github-bot committed
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
        )

        # Single mesh where two faces share one vertex so the normal is
        # the weighted sum of the two face normals.
        verts = torch.tensor(
            [
                [0.1, 0.3, 0.0],
                [0.5, 0.2, 0.0],
                [0.0, 0.3, 0.2],  # vertex is shared between two faces
                [0.0, 0.2, 0.5],
                [0.0, 0.8, 0.7],
            ],
            dtype=torch.float32,
        )
        faces = torch.tensor([[0, 1, 2], [2, 3, 4]], dtype=torch.int64)
        mesh = Meshes(verts=[verts], faces=[faces])

        verts_normals_expected = torch.tensor(
            [
                [-0.2408, -0.9631, -0.1204],
                [-0.2408, -0.9631, -0.1204],
                [-0.9389, -0.3414, -0.0427],
                [-1.0000, 0.0000, 0.0000],
                [-1.0000, 0.0000, 0.0000],
            ]
        )
        faces_normals_expected = torch.tensor(
            [[-0.2408, -0.9631, -0.1204], [-1.0000, 0.0000, 0.0000]]
        )
        self.assertTrue(
            torch.allclose(
                mesh.verts_normals_list()[0], verts_normals_expected, atol=4e-5
            )
        )
        self.assertTrue(
            torch.allclose(
                mesh.faces_normals_list()[0], faces_normals_expected, atol=4e-5
            )
        )

        # Check empty mesh has empty normals
        meshes = Meshes(verts=[], faces=[])
        self.assertEqual(meshes.verts_normals_packed().shape[0], 0)
        self.assertEqual(meshes.verts_normals_padded().shape[0], 0)
        self.assertEqual(meshes.verts_normals_list(), [])
        self.assertEqual(meshes.faces_normals_packed().shape[0], 0)
        self.assertEqual(meshes.faces_normals_padded().shape[0], 0)
        self.assertEqual(meshes.faces_normals_list(), [])

1137
1138
1139
    def test_assigned_normals(self):
        verts = torch.rand(2, 6, 3)
        faces = torch.randint(6, size=(2, 4, 3))
1140
1141
        no_normals = Meshes(verts=verts, faces=faces)
        self.assertFalse(no_normals.has_verts_normals())
1142
1143
1144
1145
1146

        for verts_normals in [list(verts.unbind(0)), verts]:
            yes_normals = Meshes(
                verts=verts.clone(), faces=faces, verts_normals=verts_normals
            )
1147
            self.assertTrue(yes_normals.has_verts_normals())
1148
1149
1150
1151
1152
1153
            self.assertClose(yes_normals.verts_normals_padded(), verts)
            yes_normals.offset_verts_(torch.FloatTensor([1, 2, 3]))
            self.assertClose(yes_normals.verts_normals_padded(), verts)
            yes_normals.offset_verts_(torch.FloatTensor([1, 2, 3]).expand(12, 3))
            self.assertFalse(torch.allclose(yes_normals.verts_normals_padded(), verts))

facebook-github-bot's avatar
facebook-github-bot committed
1154
1155
1156
1157
    def test_compute_faces_areas_cpu_cuda(self):
        num_meshes = 10
        max_v = 100
        max_f = 300
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1158
        mesh_cpu = init_mesh(num_meshes, max_v, max_f, device="cpu")
facebook-github-bot's avatar
facebook-github-bot committed
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
        device = torch.device("cuda:0")
        mesh_cuda = mesh_cpu.to(device)

        face_areas_cpu = mesh_cpu.faces_areas_packed()
        face_normals_cpu = mesh_cpu.faces_normals_packed()
        face_areas_cuda = mesh_cuda.faces_areas_packed()
        face_normals_cuda = mesh_cuda.faces_normals_packed()
        self.assertClose(face_areas_cpu, face_areas_cuda.cpu(), atol=1e-6)
        # because of the normalization of the normals with arbitrarily small values,
        # normals can become unstable. Thus only compare normals, for faces
        # with areas > eps=1e-6
        nonzero = face_areas_cpu > 1e-6
        self.assertClose(
1172
            face_normals_cpu[nonzero], face_normals_cuda.cpu()[nonzero], atol=1e-6
facebook-github-bot's avatar
facebook-github-bot committed
1173
1174
1175
1176
        )

    @staticmethod
    def compute_packed_with_init(
1177
        num_meshes: int = 10, max_v: int = 100, max_f: int = 300, device: str = "cpu"
facebook-github-bot's avatar
facebook-github-bot committed
1178
    ):
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1179
        mesh = init_mesh(num_meshes, max_v, max_f, device=device)
facebook-github-bot's avatar
facebook-github-bot committed
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
        torch.cuda.synchronize()

        def compute_packed():
            mesh._compute_packed(refresh=True)
            torch.cuda.synchronize()

        return compute_packed

    @staticmethod
    def compute_padded_with_init(
1190
        num_meshes: int = 10, max_v: int = 100, max_f: int = 300, device: str = "cpu"
facebook-github-bot's avatar
facebook-github-bot committed
1191
    ):
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1192
        mesh = init_mesh(num_meshes, max_v, max_f, device=device)
facebook-github-bot's avatar
facebook-github-bot committed
1193
1194
1195
1196
1197
1198
1199
        torch.cuda.synchronize()

        def compute_padded():
            mesh._compute_padded(refresh=True)
            torch.cuda.synchronize()

        return compute_padded