test_points_to_volumes.py 14 KB
Newer Older
David Novotny's avatar
David Novotny committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
import unittest
from typing import Tuple

import numpy as np
import torch
from common_testing import TestCaseMixin
from pytorch3d.ops import add_pointclouds_to_volumes
from pytorch3d.ops.sample_points_from_meshes import sample_points_from_meshes
from pytorch3d.structures.meshes import Meshes
from pytorch3d.structures.pointclouds import Pointclouds
from pytorch3d.structures.volumes import Volumes
from pytorch3d.transforms.so3 import so3_exponential_map


DEBUG = False
if DEBUG:
    import os
    import tempfile
    from PIL import Image


def init_cube_point_cloud(
    batch_size: int = 10, n_points: int = 100000, rotate_y: bool = True
):
    """
    Generate a random point cloud of `n_points` whose points of
    which are sampled from faces of a 3D cube.
    """

    # create the cube mesh batch_size times
    meshes = TestPointsToVolumes.init_cube_mesh(batch_size)

    # generate point clouds by sampling points from the meshes
    pcl = sample_points_from_meshes(meshes, num_samples=n_points, return_normals=False)

    # colors of the cube sides
    clrs = [
        [1.0, 0.0, 0.0],
        [1.0, 1.0, 0.0],
        [0.0, 1.0, 0.0],
        [0.0, 1.0, 1.0],
        [1.0, 1.0, 1.0],
        [1.0, 0.0, 1.0],
    ]

    # init the color tensor "rgb"
    rgb = torch.zeros_like(pcl)

    # color each side of the cube with a constant color
    clri = 0
    for dim in (0, 1, 2):
        for offs in (0.0, 1.0):
            current_face_verts = (pcl[:, :, dim] - offs).abs() <= 1e-2
            for bi in range(batch_size):
                rgb[bi, current_face_verts[bi], :] = torch.tensor(clrs[clri]).type_as(
                    pcl
                )
            clri += 1

    if rotate_y:
        # uniformly spaced rotations around y axis
        R = init_uniform_y_rotations(batch_size=batch_size)
        # rotate the point clouds around y axis
        pcl = torch.bmm(pcl - 0.5, R) + 0.5

    return pcl, rgb


def init_volume_boundary_pointcloud(
    batch_size: int,
    volume_size: Tuple[int, int, int],
    n_points: int,
    interp_mode: str,
    require_grad: bool = False,
):
    """
    Initialize a point cloud that closely follows a boundary of
    a volume with a given size. The volume buffer is initialized as well.
    """

    # generate a 3D point cloud sampled from sides of a [0,1] cube
    xyz, rgb = init_cube_point_cloud(batch_size, n_points=n_points, rotate_y=True)

    # make volume_size tensor
    volume_size_t = torch.tensor(volume_size, dtype=xyz.dtype, device=xyz.device)

    if interp_mode == "trilinear":
        # make the xyz locations fall on the boundary of the
        # first/last two voxels along each spatial dimension of the
        # volume - this properly checks the correctness of the
        # trilinear interpolation scheme
        xyz = (xyz - 0.5) * ((volume_size_t - 2) / (volume_size_t - 1))[[2, 1, 0]] + 0.5

    # rescale the cube pointcloud to overlap with the volume sides
    # of the volume
    rel_scale = volume_size_t / volume_size[0]
    xyz = xyz * rel_scale[[2, 1, 0]][None, None]

    # enable grad accumulation for the differentiability check
    xyz.requires_grad = require_grad
    rgb.requires_grad = require_grad

    # create the pointclouds structure
    pointclouds = Pointclouds(xyz, features=rgb)

    # set the volume translation so that the point cloud is centered
    # around 0
    volume_translation = -0.5 * rel_scale[[2, 1, 0]]

    # set the voxel size to 1 / (volume_size-1)
    volume_voxel_size = 1 / (volume_size[0] - 1.0)

    # instantiate the volumes
    initial_volumes = Volumes(
        features=xyz.new_zeros(batch_size, 3, *volume_size),
        densities=xyz.new_zeros(batch_size, 1, *volume_size),
        volume_translation=volume_translation,
        voxel_size=volume_voxel_size,
    )

    return pointclouds, initial_volumes


def init_uniform_y_rotations(batch_size: int = 10):
    """
    Generate a batch of `batch_size` 3x3 rotation matrices around y-axis
    whose angles are uniformly distributed between 0 and 2 pi.
    """
    device = torch.device("cuda:0")
    axis = torch.tensor([0.0, 1.0, 0.0], device=device, dtype=torch.float32)
    angles = torch.linspace(0, 2.0 * np.pi, batch_size + 1, device=device)
    angles = angles[:batch_size]
    log_rots = axis[None, :] * angles[:, None]
    R = so3_exponential_map(log_rots)
    return R


class TestPointsToVolumes(TestCaseMixin, unittest.TestCase):
    def setUp(self) -> None:
        np.random.seed(42)
        torch.manual_seed(42)

    @staticmethod
    def add_points_to_volumes(
        batch_size: int,
        volume_size: Tuple[int, int, int],
        n_points: int,
        interp_mode: str,
    ):
        (pointclouds, initial_volumes) = init_volume_boundary_pointcloud(
            batch_size=batch_size,
            volume_size=volume_size,
            n_points=n_points,
            interp_mode=interp_mode,
            require_grad=False,
        )

        def _add_points_to_volumes():
            add_pointclouds_to_volumes(pointclouds, initial_volumes, mode=interp_mode)

        return _add_points_to_volumes

    @staticmethod
    def stack_4d_tensor_to_3d(arr):
        n = arr.shape[0]
        H = int(np.ceil(np.sqrt(n)))
        W = int(np.ceil(n / H))
        n_add = H * W - n
        arr = torch.cat((arr, torch.zeros_like(arr[:1]).repeat(n_add, 1, 1, 1)))
        rows = torch.chunk(arr, chunks=W, dim=0)
        arr3d = torch.cat([torch.cat(list(row), dim=2) for row in rows], dim=1)
        return arr3d

    @staticmethod
    def init_cube_mesh(batch_size: int = 10):
        """
        Generate a batch of `batch_size` cube meshes.
        """

        device = torch.device("cuda:0")

        verts, faces = [], []

        for _ in range(batch_size):
            v = torch.tensor(
                [
                    [0.0, 0.0, 0.0],
                    [1.0, 0.0, 0.0],
                    [1.0, 1.0, 0.0],
                    [0.0, 1.0, 0.0],
                    [0.0, 1.0, 1.0],
                    [1.0, 1.0, 1.0],
                    [1.0, 0.0, 1.0],
                    [0.0, 0.0, 1.0],
                ],
                dtype=torch.float32,
                device=device,
            )
            verts.append(v)
            faces.append(
                torch.tensor(
                    [
                        [0, 2, 1],
                        [0, 3, 2],
                        [2, 3, 4],
                        [2, 4, 5],
                        [1, 2, 5],
                        [1, 5, 6],
                        [0, 7, 4],
                        [0, 4, 3],
                        [5, 4, 7],
                        [5, 7, 6],
                        [0, 6, 7],
                        [0, 1, 6],
                    ],
                    dtype=torch.int64,
                    device=device,
                )
            )

        faces = torch.stack(faces)
        verts = torch.stack(verts)

        simpleces = Meshes(verts=verts, faces=faces)

        return simpleces

    def test_from_point_cloud(self, interp_mode="trilinear"):
        """
        Generates a volume from a random point cloud sampled from faces
        of a 3D cube. Since each side of the cube is homogenously colored with
        a different color, this should result in a volume with a
        predefined homogenous color of the cells along its borders
        and black interior. The test is run for both cube and non-cube shaped
        volumes.
        """

        # batch_size = 4 sides of the cube
        batch_size = 4

        for volume_size in ([25, 25, 25], [30, 25, 15]):

            for interp_mode in ("trilinear", "nearest"):

                (pointclouds, initial_volumes) = init_volume_boundary_pointcloud(
                    volume_size=volume_size,
                    n_points=int(1e5),
                    interp_mode=interp_mode,
                    batch_size=batch_size,
                    require_grad=True,
                )

                volumes = add_pointclouds_to_volumes(
                    pointclouds, initial_volumes, mode=interp_mode
                )

                V_color, V_density = volumes.features(), volumes.densities()

                # expected colors of different cube sides
                clr_sides = torch.tensor(
                    [
                        [[1.0, 1.0, 1.0], [1.0, 0.0, 1.0]],
                        [[1.0, 0.0, 0.0], [1.0, 1.0, 0.0]],
                        [[1.0, 0.0, 1.0], [1.0, 1.0, 1.0]],
                        [[1.0, 1.0, 0.0], [1.0, 0.0, 0.0]],
                    ],
                    dtype=V_color.dtype,
                    device=V_color.device,
                )
                clr_ambient = torch.tensor(
                    [0.0, 0.0, 0.0], dtype=V_color.dtype, device=V_color.device
                )
                clr_top_bot = torch.tensor(
                    [[0.0, 1.0, 0.0], [0.0, 1.0, 1.0]],
                    dtype=V_color.dtype,
                    device=V_color.device,
                )

                if DEBUG:
                    outdir = tempfile.gettempdir() + "/test_points_to_volumes"
                    os.makedirs(outdir, exist_ok=True)

                    for slice_dim in (1, 2):
                        for vidx in range(V_color.shape[0]):
                            vim = V_color.detach()[vidx].split(1, dim=slice_dim)
                            vim = torch.stack([v.squeeze() for v in vim])
                            vim = TestPointsToVolumes.stack_4d_tensor_to_3d(vim.cpu())
                            im = Image.fromarray(
                                (vim.numpy() * 255.0)
                                .astype(np.uint8)
                                .transpose(1, 2, 0)
                            )
                            outfile = (
                                outdir
                                + f"/rgb_{interp_mode}"
                                + f"_{str(volume_size).replace(' ','')}"
                                + f"_{vidx:003d}_sldim{slice_dim}.png"
                            )
                            im.save(outfile)
                            print("exported %s" % outfile)

                # check the density V_density
                # first binarize the density
                V_density_bin = (V_density > 1e-4).type_as(V_density)
                d_one = V_density.new_ones(1)
                d_zero = V_density.new_zeros(1)
                for vidx in range(V_color.shape[0]):
                    # the first/last depth-wise slice has to be filled with 1.0
                    self._check_volume_slice_color_density(
                        V_density_bin[vidx], 1, interp_mode, d_one, "first"
                    )
                    self._check_volume_slice_color_density(
                        V_density_bin[vidx], 1, interp_mode, d_one, "last"
                    )
                    # the middle depth-wise slices have to be empty
                    self._check_volume_slice_color_density(
                        V_density_bin[vidx], 1, interp_mode, d_zero, "middle"
                    )
                    # the top/bottom slices have to be filled with 1.0
                    self._check_volume_slice_color_density(
                        V_density_bin[vidx], 2, interp_mode, d_one, "first"
                    )
                    self._check_volume_slice_color_density(
                        V_density_bin[vidx], 2, interp_mode, d_one, "last"
                    )

                # check the colors
                for vidx in range(V_color.shape[0]):
                    self._check_volume_slice_color_density(
                        V_color[vidx], 1, interp_mode, clr_sides[vidx][0], "first"
                    )
                    self._check_volume_slice_color_density(
                        V_color[vidx], 1, interp_mode, clr_sides[vidx][1], "last"
                    )
                    self._check_volume_slice_color_density(
                        V_color[vidx], 1, interp_mode, clr_ambient, "middle"
                    )
                    self._check_volume_slice_color_density(
                        V_color[vidx], 2, interp_mode, clr_top_bot[0], "first"
                    )
                    self._check_volume_slice_color_density(
                        V_color[vidx], 2, interp_mode, clr_top_bot[1], "last"
                    )

                # check differentiability
                loss = V_color.mean() + V_density.mean()
                loss.backward()
                rgb = pointclouds.features_padded()
                xyz = pointclouds.points_padded()
                for field in (xyz, rgb):
                    if interp_mode == "nearest" and (field is xyz):
                        # this does not produce grads w.r.t. xyz
                        self.assertIsNone(field.grad)
                    else:
                        self.assertTrue(field.grad.data.isfinite().all())

    def _check_volume_slice_color_density(
        self, V, split_dim, interp_mode, clr_gt, slice_type, border=3
    ):
        # decompose the volume to individual slices along split_dim
        vim = V.detach().split(1, dim=split_dim)
        vim = torch.stack([v.squeeze(split_dim) for v in vim])

        # determine which slices should be compared to clr_gt based on
        # the 'slice_type' input
        if slice_type == "first":
            slice_dims = (0, 1) if interp_mode == "trilinear" else (0,)
        elif slice_type == "last":
            slice_dims = (-1, -2) if interp_mode == "trilinear" else (-1,)
        elif slice_type == "middle":
            internal_border = 2 if interp_mode == "trilinear" else 1
            slice_dims = torch.arange(internal_border, vim.shape[0] - internal_border)
        else:
            raise ValueError(slice_type)

        # compute the average error within each slice
        clr_diff = (
            vim[slice_dims, :, border:-border, border:-border]
            - clr_gt[None, :, None, None]
        )
        clr_diff = clr_diff.abs().mean(dim=(2, 3)).view(-1)

        # check that all per-slice avg errors vanish
        self.assertClose(clr_diff, torch.zeros_like(clr_diff), atol=1e-2)