test_rasterize_meshes.py 42.1 KB
Newer Older
facebook-github-bot's avatar
facebook-github-bot committed
1
2
3
4
5
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.

import functools
import unittest

6
7
import torch
from common_testing import TestCaseMixin
facebook-github-bot's avatar
facebook-github-bot committed
8
9
10
11
12
13
14
15
from pytorch3d import _C
from pytorch3d.renderer.mesh.rasterize_meshes import (
    rasterize_meshes,
    rasterize_meshes_python,
)
from pytorch3d.structures import Meshes
from pytorch3d.utils import ico_sphere

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
16
17

class TestRasterizeMeshes(TestCaseMixin, unittest.TestCase):
facebook-github-bot's avatar
facebook-github-bot committed
18
19
    def test_simple_python(self):
        device = torch.device("cpu")
20
        self._simple_triangle_raster(rasterize_meshes_python, device, bin_size=-1)
facebook-github-bot's avatar
facebook-github-bot committed
21
22
        self._simple_blurry_raster(rasterize_meshes_python, device, bin_size=-1)
        self._test_behind_camera(rasterize_meshes_python, device, bin_size=-1)
23
        self._test_perspective_correct(rasterize_meshes_python, device, bin_size=-1)
facebook-github-bot's avatar
facebook-github-bot committed
24
25
26

    def test_simple_cpu_naive(self):
        device = torch.device("cpu")
27
28
29
30
        self._simple_triangle_raster(rasterize_meshes, device, bin_size=0)
        self._simple_blurry_raster(rasterize_meshes, device, bin_size=0)
        self._test_behind_camera(rasterize_meshes, device, bin_size=0)
        self._test_perspective_correct(rasterize_meshes, device, bin_size=0)
facebook-github-bot's avatar
facebook-github-bot committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265

    def test_simple_cuda_naive(self):
        device = torch.device("cuda:0")
        self._simple_triangle_raster(rasterize_meshes, device, bin_size=0)
        self._simple_blurry_raster(rasterize_meshes, device, bin_size=0)
        self._test_behind_camera(rasterize_meshes, device, bin_size=0)
        self._test_perspective_correct(rasterize_meshes, device, bin_size=0)

    def test_simple_cuda_binned(self):
        device = torch.device("cuda:0")
        self._simple_triangle_raster(rasterize_meshes, device, bin_size=5)
        self._simple_blurry_raster(rasterize_meshes, device, bin_size=5)
        self._test_behind_camera(rasterize_meshes, device, bin_size=5)
        self._test_perspective_correct(rasterize_meshes, device, bin_size=5)

    def test_python_vs_cpu_vs_cuda(self):
        torch.manual_seed(231)
        device = torch.device("cpu")
        image_size = 32
        blur_radius = 0.1 ** 2
        faces_per_pixel = 3

        for d in ["cpu", "cuda"]:
            device = torch.device(d)
            compare_grads = True
            # Mesh with a single face.
            verts1 = torch.tensor(
                [[0.0, 0.6, 0.1], [-0.7, -0.4, 0.5], [0.7, -0.4, 0.7]],
                dtype=torch.float32,
                requires_grad=True,
                device=device,
            )
            faces1 = torch.tensor([[0, 1, 2]], dtype=torch.int64, device=device)
            meshes1 = Meshes(verts=[verts1], faces=[faces1])
            args1 = (meshes1, image_size, blur_radius, faces_per_pixel)
            verts2 = verts1.detach().clone()
            verts2.requires_grad = True
            meshes2 = Meshes(verts=[verts2], faces=[faces1])
            args2 = (meshes2, image_size, blur_radius, faces_per_pixel)
            self._compare_impls(
                rasterize_meshes_python,
                rasterize_meshes,
                args1,
                args2,
                verts1,
                verts2,
                compare_grads=compare_grads,
            )

            # Mesh with multiple faces.
            # fmt: off
            verts1 = torch.tensor(
                [
                    [ -0.5, 0.0,  0.1],  # noqa: E241, E201
                    [  0.0, 0.6,  0.5],  # noqa: E241, E201
                    [  0.5, 0.0,  0.7],  # noqa: E241, E201
                    [-0.25, 0.0,  0.9],  # noqa: E241, E201
                    [ 0.26, 0.5,  0.8],  # noqa: E241, E201
                    [ 0.76, 0.0,  0.8],  # noqa: E241, E201
                    [-0.41, 0.0,  0.5],  # noqa: E241, E201
                    [ 0.61, 0.6,  0.6],  # noqa: E241, E201
                    [ 0.41, 0.0,  0.5],  # noqa: E241, E201
                    [ -0.2, 0.0, -0.5],  # noqa: E241, E201
                    [  0.3, 0.6, -0.5],  # noqa: E241, E201
                    [  0.4, 0.0, -0.5],  # noqa: E241, E201
                ],
                dtype=torch.float32,
                device=device,
                requires_grad=True
            )
            faces1 = torch.tensor(
                [
                    [ 1, 0,  2],  # noqa: E241, E201
                    [ 4, 3,  5],  # noqa: E241, E201
                    [ 7, 6,  8],  # noqa: E241, E201
                    [10, 9, 11]   # noqa: E241, E201
                ],
                dtype=torch.int64,
                device=device,
            )
            # fmt: on
            meshes = Meshes(verts=[verts1], faces=[faces1])
            args1 = (meshes, image_size, blur_radius, faces_per_pixel)
            verts2 = verts1.clone().detach()
            verts2.requires_grad = True
            meshes2 = Meshes(verts=[verts2], faces=[faces1])
            args2 = (meshes2, image_size, blur_radius, faces_per_pixel)
            self._compare_impls(
                rasterize_meshes_python,
                rasterize_meshes,
                args1,
                args2,
                verts1,
                verts2,
                compare_grads=compare_grads,
            )

            # Icosphere
            meshes = ico_sphere(device=device)
            verts1, faces1 = meshes.get_mesh_verts_faces(0)
            verts1.requires_grad = True
            meshes = Meshes(verts=[verts1], faces=[faces1])
            args1 = (meshes, image_size, blur_radius, faces_per_pixel)
            verts2 = verts1.detach().clone()
            verts2.requires_grad = True
            meshes2 = Meshes(verts=[verts2], faces=[faces1])
            args2 = (meshes2, image_size, blur_radius, faces_per_pixel)
            self._compare_impls(
                rasterize_meshes_python,
                rasterize_meshes,
                args1,
                args2,
                verts1,
                verts2,
                compare_grads=compare_grads,
            )

    def test_cpu_vs_cuda_naive(self):
        """
        Compare naive versions of cuda and cpp
        """

        torch.manual_seed(231)
        image_size = 64
        radius = 0.1 ** 2
        faces_per_pixel = 3
        device = torch.device("cpu")
        meshes_cpu = ico_sphere(0, device)
        verts1, faces1 = meshes_cpu.get_mesh_verts_faces(0)
        verts1.requires_grad = True
        meshes_cpu = Meshes(verts=[verts1], faces=[faces1])

        device = torch.device("cuda:0")
        meshes_cuda = ico_sphere(0, device)
        verts2, faces2 = meshes_cuda.get_mesh_verts_faces(0)
        verts2.requires_grad = True
        meshes_cuda = Meshes(verts=[verts2], faces=[faces2])

        args_cpu = (meshes_cpu, image_size, radius, faces_per_pixel)
        args_cuda = (meshes_cuda, image_size, radius, faces_per_pixel, 0, 0)
        self._compare_impls(
            rasterize_meshes,
            rasterize_meshes,
            args_cpu,
            args_cuda,
            verts1,
            verts2,
            compare_grads=True,
        )

    def test_coarse_cpu(self):
        return self._test_coarse_rasterize(torch.device("cpu"))

    def test_coarse_cuda(self):
        return self._test_coarse_rasterize(torch.device("cuda:0"))

    def test_cpp_vs_cuda_naive_vs_cuda_binned(self):
        # Make sure that the backward pass runs for all pathways
        image_size = 64  # test is too slow for very large images.
        N = 1
        radius = 0.1 ** 2
        faces_per_pixel = 3

        grad_zbuf = torch.randn(N, image_size, image_size, faces_per_pixel)
        grad_dist = torch.randn(N, image_size, image_size, faces_per_pixel)
        grad_bary = torch.randn(N, image_size, image_size, faces_per_pixel, 3)

        device = torch.device("cpu")
        meshes = ico_sphere(0, device)
        verts, faces = meshes.get_mesh_verts_faces(0)
        verts.requires_grad = True
        meshes = Meshes(verts=[verts], faces=[faces])

        # Option I: CPU, naive
        args = (meshes, image_size, radius, faces_per_pixel)
        idx1, zbuf1, bary1, dist1 = rasterize_meshes(*args)

        loss = (
            (zbuf1 * grad_zbuf).sum()
            + (dist1 * grad_dist).sum()
            + (bary1 * grad_bary).sum()
        )
        loss.backward()
        idx1 = idx1.data.cpu().clone()
        zbuf1 = zbuf1.data.cpu().clone()
        dist1 = dist1.data.cpu().clone()
        grad1 = verts.grad.data.cpu().clone()

        # Option II: CUDA, naive
        device = torch.device("cuda:0")
        meshes = ico_sphere(0, device)
        verts, faces = meshes.get_mesh_verts_faces(0)
        verts.requires_grad = True
        meshes = Meshes(verts=[verts], faces=[faces])

        args = (meshes, image_size, radius, faces_per_pixel, 0, 0)
        idx2, zbuf2, bary2, dist2 = rasterize_meshes(*args)
        grad_zbuf = grad_zbuf.cuda()
        grad_dist = grad_dist.cuda()
        grad_bary = grad_bary.cuda()
        loss = (
            (zbuf2 * grad_zbuf).sum()
            + (dist2 * grad_dist).sum()
            + (bary2 * grad_bary).sum()
        )
        loss.backward()
        idx2 = idx2.data.cpu().clone()
        zbuf2 = zbuf2.data.cpu().clone()
        dist2 = dist2.data.cpu().clone()
        grad2 = verts.grad.data.cpu().clone()

        # Option III: CUDA, binned
        device = torch.device("cuda:0")
        meshes = ico_sphere(0, device)
        verts, faces = meshes.get_mesh_verts_faces(0)
        verts.requires_grad = True
        meshes = Meshes(verts=[verts], faces=[faces])

        args = (meshes, image_size, radius, faces_per_pixel, 32, 500)
        idx3, zbuf3, bary3, dist3 = rasterize_meshes(*args)

        loss = (
            (zbuf3 * grad_zbuf).sum()
            + (dist3 * grad_dist).sum()
            + (bary3 * grad_bary).sum()
        )
        loss.backward()
        idx3 = idx3.data.cpu().clone()
        zbuf3 = zbuf3.data.cpu().clone()
        dist3 = dist3.data.cpu().clone()
        grad3 = verts.grad.data.cpu().clone()

        # Make sure everything was the same
        self.assertTrue((idx1 == idx2).all().item())
        self.assertTrue((idx1 == idx3).all().item())
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
266
267
268
269
        self.assertClose(zbuf1, zbuf2, atol=1e-6)
        self.assertClose(zbuf1, zbuf3, atol=1e-6)
        self.assertClose(dist1, dist2, atol=1e-6)
        self.assertClose(dist1, dist3, atol=1e-6)
facebook-github-bot's avatar
facebook-github-bot committed
270

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
271
272
273
        self.assertClose(grad1, grad2, rtol=5e-3)  # flaky test
        self.assertClose(grad1, grad3, rtol=5e-3)
        self.assertClose(grad2, grad3, rtol=5e-3)
facebook-github-bot's avatar
facebook-github-bot committed
274
275
276
277
278
279
280
281
282
283
284

    def test_compare_coarse_cpu_vs_cuda(self):
        torch.manual_seed(231)
        N = 1
        image_size = 512
        blur_radius = 0.0
        bin_size = 32
        max_faces_per_bin = 20

        device = torch.device("cpu")

285
        meshes = ico_sphere(2, device)
facebook-github-bot's avatar
facebook-github-bot committed
286
287
288
289
290
        faces = meshes.faces_packed()
        verts = meshes.verts_packed()
        faces_verts = verts[faces]
        num_faces_per_mesh = meshes.num_faces_per_mesh()
        mesh_to_face_first_idx = meshes.mesh_to_faces_packed_first_idx()
291
292

        bin_faces_cpu = _C._rasterize_meshes_coarse(
facebook-github-bot's avatar
facebook-github-bot committed
293
294
295
296
297
298
299
300
301
            faces_verts,
            mesh_to_face_first_idx,
            num_faces_per_mesh,
            image_size,
            blur_radius,
            bin_size,
            max_faces_per_bin,
        )
        device = torch.device("cuda:0")
302
        meshes = meshes.clone().to(device)
facebook-github-bot's avatar
facebook-github-bot committed
303
304
305
306
307
308

        faces = meshes.faces_packed()
        verts = meshes.verts_packed()
        faces_verts = verts[faces]
        num_faces_per_mesh = meshes.num_faces_per_mesh()
        mesh_to_face_first_idx = meshes.mesh_to_faces_packed_first_idx()
309
310

        bin_faces_cuda = _C._rasterize_meshes_coarse(
facebook-github-bot's avatar
facebook-github-bot committed
311
312
313
314
315
316
317
318
319
320
321
322
            faces_verts,
            mesh_to_face_first_idx,
            num_faces_per_mesh,
            image_size,
            blur_radius,
            bin_size,
            max_faces_per_bin,
        )

        # Bin faces might not be the same: CUDA version might write them in
        # any order. But if we sort the non-(-1) elements of the CUDA output
        # then they should be the same.
323

facebook-github-bot's avatar
facebook-github-bot committed
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
        for n in range(N):
            for by in range(bin_faces_cpu.shape[1]):
                for bx in range(bin_faces_cpu.shape[2]):
                    K = (bin_faces_cuda[n, by, bx] != -1).sum().item()
                    idxs_cpu = bin_faces_cpu[n, by, bx].tolist()
                    idxs_cuda = bin_faces_cuda[n, by, bx].tolist()
                    idxs_cuda[:K] = sorted(idxs_cuda[:K])
                    self.assertEqual(idxs_cpu, idxs_cuda)

    def test_python_vs_cpp_perspective_correct(self):
        torch.manual_seed(232)
        N = 2
        V = 10
        F = 5
        verts1 = torch.randn(N, V, 3, requires_grad=True)
        verts2 = verts1.detach().clone().requires_grad_(True)
        faces = torch.randint(V, size=(N, F, 3))
        meshes1 = Meshes(verts1, faces)
        meshes2 = Meshes(verts2, faces)

        kwargs = {"image_size": 24, "perspective_correct": True}
        fn1 = functools.partial(rasterize_meshes, meshes1, **kwargs)
        fn2 = functools.partial(rasterize_meshes_python, meshes2, **kwargs)
        args = ()
348
        self._compare_impls(fn1, fn2, args, args, verts1, verts2, compare_grads=True)
facebook-github-bot's avatar
facebook-github-bot committed
349
350
351
352
353
354
355
356
357
358
359
360
361
362

    def test_cpp_vs_cuda_perspective_correct(self):
        meshes = ico_sphere(2, device=torch.device("cpu"))
        verts1, faces1 = meshes.get_mesh_verts_faces(0)
        verts1.requires_grad = True
        meshes1 = Meshes(verts=[verts1], faces=[faces1])
        verts2 = verts1.detach().cuda().requires_grad_(True)
        faces2 = faces1.detach().clone().cuda()
        meshes2 = Meshes(verts=[verts2], faces=[faces2])

        kwargs = {"image_size": 64, "perspective_correct": True}
        fn1 = functools.partial(rasterize_meshes, meshes1, **kwargs)
        fn2 = functools.partial(rasterize_meshes, meshes2, bin_size=0, **kwargs)
        args = ()
363
        self._compare_impls(fn1, fn2, args, args, verts1, verts2, compare_grads=True)
facebook-github-bot's avatar
facebook-github-bot committed
364
365
366
367
368
369
370
371
372
373
374
375
376
377

    def test_cuda_naive_vs_binned_perspective_correct(self):
        meshes = ico_sphere(2, device=torch.device("cuda"))
        verts1, faces1 = meshes.get_mesh_verts_faces(0)
        verts1.requires_grad = True
        meshes1 = Meshes(verts=[verts1], faces=[faces1])
        verts2 = verts1.detach().clone().requires_grad_(True)
        faces2 = faces1.detach().clone()
        meshes2 = Meshes(verts=[verts2], faces=[faces2])

        kwargs = {"image_size": 64, "perspective_correct": True}
        fn1 = functools.partial(rasterize_meshes, meshes1, bin_size=0, **kwargs)
        fn2 = functools.partial(rasterize_meshes, meshes2, bin_size=8, **kwargs)
        args = ()
378
        self._compare_impls(fn1, fn2, args, args, verts1, verts2, compare_grads=True)
facebook-github-bot's avatar
facebook-github-bot committed
379
380
381
382
383
384
385
386
387
388
389
390
391
392

    def _compare_impls(
        self,
        fn1,
        fn2,
        args1,
        args2,
        grad_var1=None,
        grad_var2=None,
        compare_grads=False,
    ):
        idx1, zbuf1, bary1, dist1 = fn1(*args1)
        idx2, zbuf2, bary2, dist2 = fn2(*args2)
        self.assertTrue((idx1.cpu() == idx2.cpu()).all().item())
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
393
394
395
        self.assertClose(zbuf1.cpu(), zbuf2.cpu(), rtol=1e-4)
        self.assertClose(dist1.cpu(), dist2.cpu(), rtol=6e-3)
        self.assertClose(bary1.cpu(), bary2.cpu(), rtol=1e-3)
facebook-github-bot's avatar
facebook-github-bot committed
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
        if not compare_grads:
            return

        # Compare gradients.
        torch.manual_seed(231)
        grad_zbuf = torch.randn_like(zbuf1)
        grad_dist = torch.randn_like(dist1)
        grad_bary = torch.randn_like(bary1)
        loss1 = (
            (dist1 * grad_dist).sum()
            + (zbuf1 * grad_zbuf).sum()
            + (bary1 * grad_bary).sum()
        )
        loss1.backward()
        grad_verts1 = grad_var1.grad.data.clone().cpu()

        grad_zbuf = grad_zbuf.to(zbuf2)
        grad_dist = grad_dist.to(dist2)
        grad_bary = grad_bary.to(bary2)
        loss2 = (
            (dist2 * grad_dist).sum()
            + (zbuf2 * grad_zbuf).sum()
            + (bary2 * grad_bary).sum()
        )
        grad_var1.grad.data.zero_()
        loss2.backward()
        grad_verts2 = grad_var2.grad.data.clone().cpu()
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
423
        self.assertClose(grad_verts1, grad_verts2, rtol=1e-3)
facebook-github-bot's avatar
facebook-github-bot committed
424

425
    def _test_perspective_correct(self, rasterize_meshes_fn, device, bin_size=None):
facebook-github-bot's avatar
facebook-github-bot committed
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
        # fmt: off
        verts = torch.tensor([
                [-0.4, -0.4, 10],  # noqa: E241, E201
                [ 0.4, -0.4, 10],  # noqa: E241, E201
                [ 0.0,  0.4, 20],  # noqa: E241, E201
        ], dtype=torch.float32, device=device)
        # fmt: on
        faces = torch.tensor([[0, 1, 2]], device=device)
        meshes = Meshes(verts=[verts], faces=[faces])
        kwargs = {
            "meshes": meshes,
            "image_size": 11,
            "faces_per_pixel": 1,
            "blur_radius": 0.2,
            "perspective_correct": False,
        }
        if bin_size != -1:
            kwargs["bin_size"] = bin_size

        # Run with and without perspective correction
        idx_f, zbuf_f, bary_f, dists_f = rasterize_meshes_fn(**kwargs)
447

facebook-github-bot's avatar
facebook-github-bot committed
448
449
450
        kwargs["perspective_correct"] = True
        idx_t, zbuf_t, bary_t, dists_t = rasterize_meshes_fn(**kwargs)

451
        # Expected output tensors in the format with axes +X left, +Y up, +Z in
facebook-github-bot's avatar
facebook-github-bot committed
452
453
454
455
        # idx and dists should be the same with or without perspecitve correction
        # fmt: off
        idx_expected = torch.tensor([
            [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
456
457
458
459
            [-1, -1, -1, -1,  0,  0,  0, -1, -1, -1, -1],  # noqa: E241, E201
            [-1, -1, -1,  0,  0,  0,  0,  0, -1, -1, -1],  # noqa: E241, E201
            [-1, -1, -1,  0,  0,  0,  0,  0, -1, -1, -1],  # noqa: E241, E201
            [-1, -1,  0,  0,  0,  0,  0,  0,  0, -1, -1],  # noqa: E241, E201
facebook-github-bot's avatar
facebook-github-bot committed
460
461
462
463
464
            [-1, -1,  0,  0,  0,  0,  0,  0,  0, -1, -1],  # noqa: E241, E201
            [-1,  0,  0,  0,  0,  0,  0,  0,  0,  0, -1],  # noqa: E241, E201
            [-1,  0,  0,  0,  0,  0,  0,  0,  0,  0, -1],  # noqa: E241, E201
            [-1,  0,  0,  0,  0,  0,  0,  0,  0,  0, -1],  # noqa: E241, E201
            [-1, -1,  0,  0,  0,  0,  0,  0,  0, -1, -1],  # noqa: E241, E201
465
            [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]   # noqa: E241, E201
facebook-github-bot's avatar
facebook-github-bot committed
466
        ], dtype=torch.int64, device=device).view(1, 11, 11, 1)
467

facebook-github-bot's avatar
facebook-github-bot committed
468
        dists_expected = torch.tensor([
469
470
471
472
473
474
475
476
477
478
479
            [-1.,     -1.,     -1.,     -1.,    -1.,     -1.,     -1.,     -1.,     -1.,   -1., -1.],  # noqa: E241, E201
            [-1.,     -1.,     -1.,     -1., 0.1402,  0.1071,  0.1402,     -1.,     -1.,   -1., -1.],  # noqa: E241, E201
            [-1.,     -1., -    1., 0.1523,  0.0542,  0.0212,  0.0542,  0.1523,     -1.,   -1., -1.],  # noqa: E241, E201
            [-1.,     -1.,     -1., 0.0955,  0.0214, -0.0003,  0.0214,  0.0955,     -1.,   -1., -1.],  # noqa: E241, E201
            [-1.,     -1., 0.1523,  0.0518,  0.0042, -0.0095,  0.0042,  0.0518, 0.1523,    -1., -1.],  # noqa: E241, E201
            [-1.,     -1., 0.0955,  0.0214, -0.0003,  -0.032, -0.0003,  0.0214, 0.0955,    -1., -1.],  # noqa: E241, E201
            [-1., 0.1523,  0.0518,  0.0042, -0.0095, -0.0476, -0.0095,  0.0042, 0.0518, 0.1523, -1.],  # noqa: E241, E201
            [-1., 0.1084,  0.0225, -0.0003, -0.0013, -0.0013, -0.0013, -0.0003, 0.0225, 0.1084, -1.],  # noqa: E241, E201
            [-1., 0.1283,  0.0423,  0.0212,  0.0212,  0.0212,  0.0212,  0.0212, 0.0423, 0.1283, -1.],  # noqa: E241, E201
            [-1.,     -1., 0.1283,  0.1071,  0.1071,  0.1071,  0.1071,  0.1071, 0.1283,    -1., -1.],  # noqa: E241, E201
            [-1.,     -1.,     -1.,     -1.,     -1.,     -1.,     -1.,     -1.,    -1.,   -1., -1.]   # noqa: E241, E201
facebook-github-bot's avatar
facebook-github-bot committed
480
481
482
483
        ], dtype=torch.float32, device=device).view(1, 11, 11, 1)

        # zbuf and barycentric will be different with perspective correction
        zbuf_f_expected = torch.tensor([
484
485
486
487
488
489
490
491
492
493
494
            [-1.,      -1.,     -1.,     -1.,     -1.,     -1.,      -1.,    -1.,     -1.,     -1., -1.],  # noqa: E241, E201
            [-1.,      -1.,     -1.,     -1., 24.0909, 24.0909, 24.0909,     -1.,     -1.,     -1., -1.],  # noqa: E241, E201
            [-1.,      -1.,     -1., 21.8182, 21.8182, 21.8182, 21.8182, 21.8182,     -1.,     -1., -1.],  # noqa: E241, E201
            [-1.,      -1.,     -1., 19.5455, 19.5455, 19.5455, 19.5455, 19.5455,     -1.,     -1., -1.],  # noqa: E241, E201
            [-1.,      -1., 17.2727, 17.2727, 17.2727, 17.2727, 17.2727, 17.2727, 17.2727,     -1., -1.],  # noqa: E241, E201
            [-1.,      -1.,      15.,     15.,     15.,     15.,     15.,    15.,     15.,     -1., -1.],  # noqa: E241, E201
            [-1., 12.7273,  12.7273, 12.7273, 12.7273, 12.7273, 12.7273, 12.7273, 12.7273, 12.7273, -1.],  # noqa: E241, E201
            [-1., 10.4545,  10.4545, 10.4545, 10.4545, 10.4545, 10.4545, 10.4545, 10.4545, 10.4545, -1.],  # noqa: E241, E201
            [-1.,  8.1818,   8.1818,  8.1818,  8.1818,  8.1818,  8.1818,  8.1818,  8.1818,  8.1818, -1.],  # noqa: E241, E201
            [-1.,      -1.,  5.9091,  5.9091,  5.9091,  5.9091,  5.9091,  5.9091,  5.9091,     -1., -1.],  # noqa: E241, E201
            [-1.,       -1.,     -1.,     -1.,     -1.,     -1.,     -1.,     -1.,     -1.,    -1., -1.],  # noqa: E241, E201
facebook-github-bot's avatar
facebook-github-bot committed
495
        ], dtype=torch.float32, device=device).view(1, 11, 11, 1)
496

facebook-github-bot's avatar
facebook-github-bot committed
497
        zbuf_t_expected = torch.tensor([
498
499
500
501
502
503
504
505
506
507
508
             [-1.,     -1.,     -1.,     -1.,     -1.,     -1.,     -1.,     -1.,     -1.,     -1., -1.],  # noqa: E241, E201
             [-1.,     -1.,     -1.,     -1., 33.8461, 33.8462, 33.8462,     -1.,     -1.,     -1., -1.],  # noqa: E241, E201
             [-1.,     -1.,     -1., 24.4444, 24.4444, 24.4444, 24.4444, 24.4444,     -1.,     -1., -1.],  # noqa: E241, E201
             [-1.,     -1.,     -1., 19.1304, 19.1304, 19.1304, 19.1304, 19.1304,     -1.,     -1., -1.],  # noqa: E241, E201
             [-1.,     -1., 15.7143, 15.7143, 15.7143, 15.7143, 15.7143, 15.7143, 15.7143,     -1., -1.],  # noqa: E241, E201
             [-1.,     -1., 13.3333, 13.3333, 13.3333, 13.3333, 13.3333, 13.3333, 13.3333,     -1., -1.],  # noqa: E241, E201
             [-1., 11.5789, 11.5789, 11.5789, 11.5789, 11.5789, 11.5789, 11.5789, 11.5789, 11.5789, -1.],  # noqa: E241, E201
             [-1., 10.2326, 10.2326, 10.2326, 10.2326, 10.2326, 10.2326, 10.2326, 10.2326, 10.2326, -1.],  # noqa: E241, E201
             [-1.,  9.1667,  9.1667,  9.1667,  9.1667,  9.1667,  9.1667,  9.1667,  9.1667,  9.1667, -1.],  # noqa: E241, E201
             [-1.,      -1., 8.3019,  8.3019,  8.3019,  8.3019,  8.3019,  8.3019,  8.3019,     -1., -1.],  # noqa: E241, E201
             [-1.,      -1.,     -1.,    -1.,     -1.,     -1.,     -1.,     -1.,     -1.,     -1., -1.]   # noqa: E241, E201
facebook-github-bot's avatar
facebook-github-bot committed
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
        ], dtype=torch.float32, device=device).view(1, 11, 11, 1)
        # fmt: on

        self.assertTrue(torch.all(idx_f == idx_expected).item())
        self.assertTrue(torch.all(idx_t == idx_expected).item())
        dists_t_max_diff = (dists_t - dists_expected).abs().max().item()
        dists_f_max_diff = (dists_f - dists_expected).abs().max().item()
        self.assertLess(dists_t_max_diff, 1e-4)
        self.assertLess(dists_f_max_diff, 1e-4)
        zbuf_f_max_diff = (zbuf_f - zbuf_f_expected).abs().max().item()
        zbuf_t_max_diff = (zbuf_t - zbuf_t_expected).abs().max().item()
        self.assertLess(zbuf_f_max_diff, 1e-4)
        self.assertLess(zbuf_t_max_diff, 1e-4)

        # Check barycentrics by using them to re-compute zbuf
        z0 = verts[0, 2]
        z1 = verts[1, 2]
        z2 = verts[2, 2]
        w0_f, w1_f, w2_f = bary_f.unbind(dim=4)
        w0_t, w1_t, w2_t = bary_t.unbind(dim=4)
        zbuf_f_bary = w0_f * z0 + w1_f * z1 + w2_f * z2
        zbuf_t_bary = w0_t * z0 + w1_t * z1 + w2_t * z2
        mask = idx_expected != -1
532
533
        zbuf_f_bary_diff = (zbuf_f_bary[mask] - zbuf_f_expected[mask]).abs().max()
        zbuf_t_bary_diff = (zbuf_t_bary[mask] - zbuf_t_expected[mask]).abs().max()
facebook-github-bot's avatar
facebook-github-bot committed
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
        self.assertLess(zbuf_f_bary_diff, 1e-4)
        self.assertLess(zbuf_t_bary_diff, 1e-4)

    def _test_behind_camera(self, rasterize_meshes_fn, device, bin_size=None):
        """
        All verts are behind the camera so nothing should get rasterized.
        """
        N = 1
        # fmt: off
        verts = torch.tensor(
            [
                [ -0.5, 0.0, -0.1],  # noqa: E241, E201
                [  0.0, 0.6, -0.1],  # noqa: E241, E201
                [  0.5, 0.0, -0.1],  # noqa: E241, E201
                [-0.25, 0.0, -0.9],  # noqa: E241, E201
                [ 0.25, 0.5, -0.9],  # noqa: E241, E201
                [ 0.75, 0.0, -0.9],  # noqa: E241, E201
                [ -0.4, 0.0, -0.5],  # noqa: E241, E201
                [  0.6, 0.6, -0.5],  # noqa: E241, E201
                [  0.8, 0.0, -0.5],  # noqa: E241, E201
                [ -0.2, 0.0, -0.5],  # noqa: E241, E201
                [  0.3, 0.6, -0.5],  # noqa: E241, E201
                [  0.4, 0.0, -0.5],  # noqa: E241, E201
            ],
            dtype=torch.float32,
            device=device,
        )
        # fmt: on
        faces = torch.tensor(
            [[1, 0, 2], [4, 3, 5], [7, 6, 8], [10, 9, 11]],
            dtype=torch.int64,
            device=device,
        )
        meshes = Meshes(verts=[verts], faces=[faces])
        image_size = 16
        faces_per_pixel = 1
        radius = 0.2
        idx_expected = torch.full(
            (N, image_size, image_size, faces_per_pixel),
            fill_value=-1,
            dtype=torch.int64,
            device=device,
        )
        bary_expected = torch.full(
            (N, image_size, image_size, faces_per_pixel, 3),
            fill_value=-1,
            dtype=torch.float32,
            device=device,
        )
        zbuf_expected = torch.full(
            (N, image_size, image_size, faces_per_pixel),
            fill_value=-1,
            dtype=torch.float32,
            device=device,
        )
        dists_expected = zbuf_expected.clone()
        if bin_size == -1:
            # naive python version with no binning
            idx, zbuf, bary, dists = rasterize_meshes_fn(
                meshes, image_size, radius, faces_per_pixel
            )
        else:
            idx, zbuf, bary, dists = rasterize_meshes_fn(
                meshes, image_size, radius, faces_per_pixel, bin_size
            )
        idx_same = (idx == idx_expected).all().item()
        zbuf_same = (zbuf == zbuf_expected).all().item()
        self.assertTrue(idx_same)
        self.assertTrue(zbuf_same)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
603
604
        self.assertClose(bary, bary_expected)
        self.assertClose(dists, dists_expected)
facebook-github-bot's avatar
facebook-github-bot committed
605
606
607
608

    def _simple_triangle_raster(self, raster_fn, device, bin_size=None):
        image_size = 10

609
610
        # Mesh with a single non-symmetrical face - this will help
        # check that the XY directions are correctly oriented.
facebook-github-bot's avatar
facebook-github-bot committed
611
        verts0 = torch.tensor(
612
            [[-0.3, -0.4, 0.1], [0.0, 0.6, 0.1], [0.9, -0.4, 0.1]],
facebook-github-bot's avatar
facebook-github-bot committed
613
614
615
616
617
618
619
620
621
            dtype=torch.float32,
            device=device,
        )
        faces0 = torch.tensor([[1, 0, 2]], dtype=torch.int64, device=device)

        # Mesh with two overlapping faces.
        # fmt: off
        verts1 = torch.tensor(
            [
622
                [-0.9, -0.2, 0.1],  # noqa: E241, E201
facebook-github-bot's avatar
facebook-github-bot committed
623
624
625
626
627
628
629
630
631
632
633
634
635
636
                [ 0.0,  0.6, 0.1],  # noqa: E241, E201
                [ 0.7, -0.4, 0.1],  # noqa: E241, E201
                [-0.7,  0.4, 0.5],  # noqa: E241, E201
                [ 0.0, -0.6, 0.5],  # noqa: E241, E201
                [ 0.7,  0.4, 0.5],  # noqa: E241, E201
            ],
            dtype=torch.float32,
            device=device,
        )
        # fmt on
        faces1 = torch.tensor(
            [[1, 0, 2], [3, 4, 5]], dtype=torch.int64, device=device
        )

637
638
        # Expected output tensors in the format with axes +X left, +Y up, +Z in
        # k = 0, closest point.
facebook-github-bot's avatar
facebook-github-bot committed
639
640
641
642
643
644
645
        # fmt off
        expected_p2face_k0 = torch.tensor(
            [
                [
                    [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
646
647
648
649
                    [-1, -1, -1, -1,  0, -1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1, -1, -1,  0,  0,  0, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1, -1,  0,  0,  0,  0, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1,  0,  0,  0,  0,  0, -1, -1, -1, -1],  # noqa: E241, E201
facebook-github-bot's avatar
facebook-github-bot committed
650
651
652
653
654
655
656
                    [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                ],
                [
                    [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
657
658
659
660
661
                    [-1, -1, -1, -1, -1,  1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1, -1,  2,  2,  1,  1,  1,  2, -1, -1],  # noqa: E241, E201
                    [-1, -1, -1,  1,  1,  1,  1,  1, -1, -1],  # noqa: E241, E201
                    [-1, -1, -1,  1,  1,  1,  1,  1,  1, -1],  # noqa: E241, E201
                    [-1, -1,  1,  1,  1,  2, -1, -1, -1, -1],  # noqa: E241, E201
facebook-github-bot's avatar
facebook-github-bot committed
662
663
664
665
666
667
668
669
670
                    [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                ],
            ],
            dtype=torch.int64,
            device=device,
        )
        expected_zbuf_k0 = torch.tensor(
671
        [
facebook-github-bot's avatar
facebook-github-bot committed
672
            [
673
674
675
676
677
678
679
680
681
682
                [-1,  -1,  -1,  -1,  -1,  -1, -1, -1, -1, -1],  # noqa: E241, E201
                [-1,  -1,  -1,  -1,  -1,  -1, -1, -1, -1, -1],  # noqa: E241, E201
                [-1,  -1,  -1,  -1,  -1,  -1, -1, -1, -1, -1],  # noqa: E241, E201
                [-1,  -1,  -1,  -1, 0.1,  -1, -1, -1, -1, -1],  # noqa: E241, E201
                [-1,  -1,  -1, 0.1, 0.1, 0.1, -1, -1, -1, -1],  # noqa: E241, E201
                [-1,  -1, 0.1, 0.1, 0.1, 0.1, -1, -1, -1, -1],  # noqa: E241, E201
                [-1, 0.1, 0.1, 0.1, 0.1, 0.1, -1, -1, -1, -1],  # noqa: E241, E201
                [-1,  -1,  -1,  -1,  -1,  -1, -1, -1, -1, -1],  # noqa: E241, E201
                [-1,  -1,  -1,  -1,  -1,  -1, -1, -1, -1, -1],  # noqa: E241, E201
                [-1,  -1,  -1,  -1,  -1,  -1, -1, -1, -1, -1]   # noqa: E241, E201
facebook-github-bot's avatar
facebook-github-bot committed
683
            ],
684
685
686
687
688
689
690
691
692
693
694
695
696
            [
                [-1, -1,  -1,  -1,  -1, -1,   -1,  -1,  -1, -1],  # noqa: E241, E201
                [-1, -1,  -1,  -1,  -1, -1,   -1,  -1,  -1, -1],  # noqa: E241, E201
                [-1, -1,  -1,  -1,  -1, 0.1,  -1,  -1,  -1, -1],  # noqa: E241, E201
                [-1, -1, 0.5, 0.5, 0.1, 0.1, 0.1, 0.5,  -1, -1],  # noqa: E241, E201
                [-1, -1,  -1, 0.1, 0.1, 0.1, 0.1, 0.1,  -1, -1],  # noqa: E241, E201
                [-1, -1,  -1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, -1],  # noqa: E241, E201
                [-1, -1, 0.1, 0.1, 0.1, 0.5,  -1,  -1,  -1, -1],  # noqa: E241, E201
                [-1, -1,  -1,  -1,  -1,  -1,  -1,  -1,  -1, -1],  # noqa: E241, E201
                [-1, -1,  -1,  -1,  -1,  -1,  -1,  -1,  -1, -1],  # noqa: E241, E201
                [-1, -1,  -1,  -1,  -1,  -1,  -1,  -1,  -1, -1]   # noqa: E241, E201
            ]
        ],
facebook-github-bot's avatar
facebook-github-bot committed
697
698
699
700
701
702
703
704
            device=device,
        )
        # fmt: on

        meshes = Meshes(verts=[verts0, verts1], faces=[faces0, faces1])

        # k = 1, second closest point.
        expected_p2face_k1 = expected_p2face_k0.clone()
705
        expected_p2face_k1[0, :] = torch.ones_like(expected_p2face_k1[0, :]) * -1
facebook-github-bot's avatar
facebook-github-bot committed
706
707
708

        # fmt: off
        expected_p2face_k1[1, :] = torch.tensor(
709
710
711
712
713
714
715
716
717
718
719
720
        [
            [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
            [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
            [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
            [-1, -1, -1, -1,  2,  2,  2, -1, -1, -1],  # noqa: E241, E201
            [-1, -1, -1,  2,  2,  2,  2, -1, -1, -1],  # noqa: E241, E201
            [-1, -1, -1,  2,  2,  2,  2, -1, -1, -1],  # noqa: E241, E201
            [-1, -1, -1, -1,  2, -1, -1, -1, -1, -1],  # noqa: E241, E201
            [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
            [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
            [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1]   # noqa: E241, E201
        ],
facebook-github-bot's avatar
facebook-github-bot committed
721
722
723
724
725
726
727
            dtype=torch.int64,
            device=device,
        )
        expected_zbuf_k1 = expected_zbuf_k0.clone()
        expected_zbuf_k1[0, :] = torch.ones_like(expected_zbuf_k1[0, :]) * -1
        expected_zbuf_k1[1, :] = torch.tensor(
            [
728
729
730
731
732
733
734
735
736
737
                [-1., -1., -1.,  -1.,  -1.,  -1., -1., -1., -1., -1.],  # noqa: E241, E201
                [-1., -1., -1.,  -1.,  -1.,  -1., -1., -1., -1., -1.],  # noqa: E241, E201
                [-1., -1., -1.,  -1.,  -1.,  -1., -1., -1., -1., -1.],  # noqa: E241, E201
                [-1., -1., -1.,  -1.,  0.5, 0.5,  0.5, -1., -1., -1.],  # noqa: E241, E201
                [-1., -1., -1.,  0.5,  0.5, 0.5,  0.5, -1., -1., -1.],  # noqa: E241, E201
                [-1., -1., -1.,  0.5,  0.5, 0.5,  0.5, -1., -1., -1.],  # noqa: E241, E201
                [-1., -1., -1.,  -1.,  0.5,  -1., -1., -1., -1., -1.],  # noqa: E241, E201
                [-1., -1., -1.,  -1.,  -1.,  -1., -1., -1., -1., -1.],  # noqa: E241, E201
                [-1., -1., -1.,  -1.,  -1.,  -1., -1., -1., -1., -1.],  # noqa: E241, E201
                [-1., -1., -1.,  -1.,  -1.,  -1., -1., -1., -1., -1.]   # noqa: E241, E201
facebook-github-bot's avatar
facebook-github-bot committed
738
739
740
741
742
            ],
            dtype=torch.float32,
            device=device,
        )
        # fmt: on
743
744
745
746

        #  Coordinate conventions +Y up, +Z in, +X left
        if bin_size == -1:
            # simple python, no bin_size
747
            p2face, zbuf, bary, pix_dists = raster_fn(meshes, image_size, 0.0, 2)
748
749
750
751
752
        else:
            p2face, zbuf, bary, pix_dists = raster_fn(
                meshes, image_size, 0.0, 2, bin_size
            )

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
753
754
755
756
        self.assertClose(p2face[..., 0], expected_p2face_k0)
        self.assertClose(zbuf[..., 0], expected_zbuf_k0)
        self.assertClose(p2face[..., 1], expected_p2face_k1)
        self.assertClose(zbuf[..., 1], expected_zbuf_k1)
facebook-github-bot's avatar
facebook-github-bot committed
757
758
759
760
761
762
763
764
765
766
767
768
769

    def _simple_blurry_raster(self, raster_fn, device, bin_size=None):
        """
        Check that pix_to_face, dist and zbuf values are invariant to the
        ordering of faces.
        """
        image_size = 10
        blur_radius = 0.12 ** 2
        faces_per_pixel = 1

        # fmt: off
        verts = torch.tensor(
            [
770
                [ -0.3, 0.0,  0.1],  # noqa: E241, E201
facebook-github-bot's avatar
facebook-github-bot committed
771
                [  0.0, 0.6,  0.1],  # noqa: E241, E201
772
                [  0.8, 0.0,  0.1],  # noqa: E241, E201
facebook-github-bot's avatar
facebook-github-bot committed
773
774
775
776
777
778
779
780
781
782
783
784
785
                [-0.25, 0.0,  0.9],  # noqa: E241, E201
                [0.25,  0.5,  0.9],  # noqa: E241, E201
                [0.75,  0.0,  0.9],  # noqa: E241, E201
                [-0.4,  0.0,  0.5],  # noqa: E241, E201
                [ 0.6,  0.6,  0.5],  # noqa: E241, E201
                [ 0.8,  0.0,  0.5],  # noqa: E241, E201
                [-0.2,  0.0, -0.5],  # noqa: E241, E201  face behind the camera
                [ 0.3,  0.6, -0.5],  # noqa: E241, E201
                [ 0.4,  0.0, -0.5],  # noqa: E241, E201
            ],
            dtype=torch.float32,
            device=device,
        )
786
787
        # Face with index 0 is non symmetric about the X and Y axis to
        # test that the positive Y and X directions are correct in the output.
facebook-github-bot's avatar
facebook-github-bot committed
788
789
790
791
792
793
794
795
796
        faces_packed = torch.tensor(
            [[1, 0, 2], [4, 3, 5], [7, 6, 8], [10, 9, 11]],
            dtype=torch.int64,
            device=device,
        )
        expected_p2f = torch.tensor(
            [
                [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
797
798
799
800
                [-1,  2,  2,  0,  0,  0, -1, -1, -1, -1],  # noqa: E241, E201
                [-1,  2,  0,  0,  0,  0, -1, -1, -1, -1],  # noqa: E241, E201
                [-1,  0,  0,  0,  0,  0,  0, -1, -1, -1],  # noqa: E241, E201
                [-1,  0,  0,  0,  0,  0,  0, -1, -1, -1],  # noqa: E241, E201
facebook-github-bot's avatar
facebook-github-bot committed
801
802
803
804
805
806
807
808
809
810
                [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
            ],
            dtype=torch.int64,
            device=device,
        )
        expected_zbuf = torch.tensor(
            [
811
812
813
814
815
816
817
818
819
820
                [-1.,   -1.,  -1.,  -1.,  -1.,  -1., -1., -1., -1., -1.],  # noqa: E241, E201
                [-1.,   -1.,  -1.,  -1.,  -1.,  -1., -1., -1., -1., -1.],  # noqa: E241, E201
                [-1.,  0.5,  0.5,  0.1,  0.1,  0.1,  -1., -1., -1., -1.],  # noqa: E241, E201
                [-1.,  0.5,  0.1,  0.1,  0.1,  0.1,  -1., -1., -1., -1.],  # noqa: E241, E201
                [-1.,  0.1,  0.1,  0.1,  0.1,  0.1,  0.1, -1., -1., -1.],  # noqa: E241, E201
                [-1.,  0.1,  0.1,  0.1,  0.1,  0.1,  0.1, -1., -1., -1.],  # noqa: E241, E201
                [-1.,   -1.,  -1.,  -1.,  -1.,  -1., -1., -1., -1., -1.],  # noqa: E241, E201
                [-1.,   -1.,  -1.,  -1.,  -1.,  -1., -1., -1., -1., -1.],  # noqa: E241, E201
                [-1.,   -1.,  -1.,  -1.,  -1.,  -1., -1., -1., -1., -1.],  # noqa: E241, E201
                [-1.,   -1.,  -1.,  -1.,  -1.,  -1., -1., -1., -1., -1.]   # noqa: E241, E201
facebook-github-bot's avatar
facebook-github-bot committed
821
822
823
824
825
826
827
828
829
830
            ],
            dtype=torch.float32,
            device=device,
        )
        # fmt: on

        for i, order in enumerate([[0, 1, 2], [1, 2, 0], [2, 0, 1]]):
            faces = faces_packed[order]  # rearrange order of faces.
            mesh = Meshes(verts=[verts], faces=[faces])
            if bin_size == -1:
831
                # simple python, no bin size arg
facebook-github-bot's avatar
facebook-github-bot committed
832
833
834
835
836
837
838
839
840
841
842
843
844
                pix_to_face, zbuf, bary_coords, dists = raster_fn(
                    mesh, image_size, blur_radius, faces_per_pixel
                )
            else:
                pix_to_face, zbuf, bary_coords, dists = raster_fn(
                    mesh, image_size, blur_radius, faces_per_pixel, bin_size
                )
            if i == 0:
                expected_dists = dists
            p2f = expected_p2f.clone()
            p2f[expected_p2f == 0] = order.index(0)
            p2f[expected_p2f == 1] = order.index(1)
            p2f[expected_p2f == 2] = order.index(2)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
845
846
847
            self.assertClose(pix_to_face.squeeze(), p2f)
            self.assertClose(zbuf.squeeze(), expected_zbuf, rtol=1e-5)
            self.assertClose(dists, expected_dists)
facebook-github-bot's avatar
facebook-github-bot committed
848
849
850

    def _test_coarse_rasterize(self, device):
        image_size = 16
851
852
853
        # No blurring. This test checks that the XY directions are
        # correctly oriented.
        blur_radius = 0.0
facebook-github-bot's avatar
facebook-github-bot committed
854
855
856
857
858
859
        bin_size = 8
        max_faces_per_bin = 3

        # fmt: off
        verts = torch.tensor(
            [
860
861
862
863
864
865
866
867
868
869
870
871
                [-0.5,   0.1,  0.1],  # noqa: E241, E201
                [-0.3,   0.6,  0.1],  # noqa: E241, E201
                [-0.1,   0.1,  0.1],  # noqa: E241, E201
                [-0.3,  -0.1,  0.4],  # noqa: E241, E201
                [ 0.3,   0.5,  0.4],  # noqa: E241, E201
                [0.75,  -0.1,  0.4],  # noqa: E241, E201
                [ 0.2,  -0.3,  0.9],  # noqa: E241, E201
                [ 0.3,  -0.7,  0.9],  # noqa: E241, E201
                [ 0.6,  -0.3,  0.9],  # noqa: E241, E201
                [-0.4,   0.0, -1.5],  # noqa: E241, E201
                [ 0.6,   0.6, -1.5],  # noqa: E241, E201
                [ 0.8,   0.0, -1.5],  # noqa: E241, E201
facebook-github-bot's avatar
facebook-github-bot committed
872
873
874
            ],
            device=device,
        )
875
876
        # Expected faces using axes convention +Y down, + X right, +Z in
        # Non symmetrical triangles i.e face 0 and 3 are in one bin only
facebook-github-bot's avatar
facebook-github-bot committed
877
878
        faces = torch.tensor(
            [
879
880
881
                [ 1, 0,  2],  # noqa: E241, E201  bin 01 only
                [ 4, 3,  5],  # noqa: E241, E201  all bins
                [ 7, 6,  8],  # noqa: E241, E201  bin 10 only
facebook-github-bot's avatar
facebook-github-bot committed
882
883
884
885
886
887
888
889
890
891
892
893
                [10, 9, 11],  # noqa: E241, E201  negative z, should not appear.
            ],
            dtype=torch.int64,
            device=device,
        )
        # fmt: on

        meshes = Meshes(verts=[verts], faces=[faces])
        faces_verts = verts[faces]
        num_faces_per_mesh = meshes.num_faces_per_mesh()
        mesh_to_face_first_idx = meshes.mesh_to_faces_packed_first_idx()

894
        # Expected faces using axes convention +Y down, + X right, + Z in
facebook-github-bot's avatar
facebook-github-bot committed
895
        bin_faces_expected = (
896
            torch.ones((1, 2, 2, max_faces_per_bin), dtype=torch.int32, device=device)
facebook-github-bot's avatar
facebook-github-bot committed
897
898
            * -1
        )
899
        bin_faces_expected[0, 1, 1, 0] = torch.tensor([1])
Nikhila Ravi's avatar
Nikhila Ravi committed
900
901
902
        bin_faces_expected[0, 0, 1, 0:2] = torch.tensor([1, 2])
        bin_faces_expected[0, 1, 0, 0:2] = torch.tensor([0, 1])
        bin_faces_expected[0, 0, 0, 0] = torch.tensor([1])
903
904

        # +Y up, +X left, +Z in
facebook-github-bot's avatar
facebook-github-bot committed
905
906
907
908
909
910
911
912
913
        bin_faces = _C._rasterize_meshes_coarse(
            faces_verts,
            mesh_to_face_first_idx,
            num_faces_per_mesh,
            image_size,
            blur_radius,
            bin_size,
            max_faces_per_bin,
        )
Nikhila Ravi's avatar
Nikhila Ravi committed
914

915
        bin_faces_same = (bin_faces.squeeze() == bin_faces_expected).all()
facebook-github-bot's avatar
facebook-github-bot committed
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
        self.assertTrue(bin_faces_same.item() == 1)

    @staticmethod
    def rasterize_meshes_python_with_init(
        num_meshes: int, ico_level: int, image_size: int, blur_radius: float
    ):
        device = torch.device("cpu")
        meshes = ico_sphere(ico_level, device)
        meshes_batch = meshes.extend(num_meshes)

        def rasterize():
            rasterize_meshes_python(meshes_batch, image_size, blur_radius)

        return rasterize

    @staticmethod
    def rasterize_meshes_cpu_with_init(
        num_meshes: int, ico_level: int, image_size: int, blur_radius: float
    ):
        meshes = ico_sphere(ico_level, torch.device("cpu"))
        meshes_batch = meshes.extend(num_meshes)

        def rasterize():
            rasterize_meshes(meshes_batch, image_size, blur_radius, bin_size=0)

        return rasterize

    @staticmethod
    def rasterize_meshes_cuda_with_init(
        num_meshes: int,
        ico_level: int,
        image_size: int,
        blur_radius: float,
        bin_size: int,
        max_faces_per_bin: int,
    ):

        meshes = ico_sphere(ico_level, torch.device("cuda:0"))
        meshes_batch = meshes.extend(num_meshes)
        torch.cuda.synchronize()

        def rasterize():
            rasterize_meshes(
959
                meshes_batch, image_size, blur_radius, 8, bin_size, max_faces_per_bin
facebook-github-bot's avatar
facebook-github-bot committed
960
961
962
963
            )
            torch.cuda.synchronize()

        return rasterize