test_depth.py 3.53 KB
Newer Older
1
# Copyright (c) Meta Platforms, Inc. and affiliates.
Patrick Labatut's avatar
Patrick Labatut committed
2
3
4
5
6
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

Christoph Lassner's avatar
Christoph Lassner committed
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
"""Test the sorting of the closest spheres."""
import logging
import os
import sys
import unittest
from os import path

import imageio
import numpy as np
import torch


# fmt: off
# Make the mixin available.
sys.path.insert(0, path.join(path.dirname(__file__), ".."))
from common_testing import TestCaseMixin  # isort:skip  # noqa: E402
# fmt: on

# Making sure you can run this, even if pulsar hasn't been installed yet.
sys.path.insert(0, path.join(path.dirname(__file__), "..", ".."))

devices = [torch.device("cuda"), torch.device("cpu")]
IN_REF_FP = path.join(path.dirname(__file__), "reference", "nr0000-in.pth")
OUT_REF_FP = path.join(path.dirname(__file__), "reference", "nr0000-out.pth")


class TestDepth(TestCaseMixin, unittest.TestCase):
    """Test different numbers of channels."""

    def test_basic(self):
        from pytorch3d.renderer.points.pulsar import Renderer

        for device in devices:
            gamma = 1e-5
            max_depth = 15.0
            min_depth = 5.0
            renderer = Renderer(
                256,
                256,
                10000,
                orthogonal_projection=True,
                right_handed_system=False,
                n_channels=1,
            ).to(device)
            data = torch.load(IN_REF_FP, map_location="cpu")
Christoph Lassner's avatar
Christoph Lassner committed
52
53
            # For creating the reference files.
            # Use in case of updates.
Christoph Lassner's avatar
Christoph Lassner committed
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
            # data["pos"] = torch.rand_like(data["pos"])
            # data["pos"][:, 0] = data["pos"][:, 0] * 2. - 1.
            # data["pos"][:, 1] = data["pos"][:, 1] * 2. - 1.
            # data["pos"][:, 2] = data["pos"][:, 2] + 9.5
            result, result_info = renderer.forward(
                data["pos"].to(device),
                data["col"].to(device),
                data["rad"].to(device),
                data["cam_params"].to(device),
                gamma,
                min_depth=min_depth,
                max_depth=max_depth,
                return_forward_info=True,
                bg_col=torch.zeros(1, device=device, dtype=torch.float32),
                percent_allowed_difference=0.01,
            )
            depth_map = Renderer.depth_map_from_result_info_nograd(result_info)
            depth_vis = (depth_map - depth_map[depth_map > 0].min()) * 200 / (
                depth_map.max() - depth_map[depth_map > 0.0].min()
            ) + 50
            if not os.environ.get("FB_TEST", False):
                imageio.imwrite(
                    path.join(
                        path.dirname(__file__),
                        "test_out",
                        "test_depth_test_basic_depth.png",
                    ),
                    depth_vis.cpu().numpy().astype(np.uint8),
                )
Christoph Lassner's avatar
Christoph Lassner committed
83
84
            # For creating the reference files.
            # Use in case of updates.
Christoph Lassner's avatar
Christoph Lassner committed
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
            # torch.save(
            #     data, path.join(path.dirname(__file__), "reference", "nr0000-in.pth")
            # )
            # torch.save(
            #     {"sphere_ids": sphere_ids, "depth_map": depth_map},
            #     path.join(path.dirname(__file__), "reference", "nr0000-out.pth"),
            # )
            # sys.exit(0)
            reference = torch.load(OUT_REF_FP, map_location="cpu")
            self.assertClose(reference["depth_map"].to(device), depth_map)


if __name__ == "__main__":
    logging.basicConfig(level=logging.INFO)
    unittest.main()