create_multiview.py 2.91 KB
Newer Older
Christoph Lassner's avatar
Christoph Lassner committed
1
#!/usr/bin/env python3
2
# Copyright (c) Meta Platforms, Inc. and affiliates.
Patrick Labatut's avatar
Patrick Labatut committed
3
4
5
6
7
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

Christoph Lassner's avatar
Christoph Lassner committed
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
"""Create multiview data."""
import sys
from os import path


# Making sure you can run this, even if pulsar hasn't been installed yet.
sys.path.insert(0, path.join(path.dirname(__file__), "..", ".."))


def create_multiview():
    """Test multiview optimization."""
    import imageio

    # import cv2
    # import skvideo.io
    import numpy as np
24
25
26
27
    import torch
    from pytorch3d.renderer.points.pulsar import Renderer
    from torch import nn
    from torch.autograd import Variable
Christoph Lassner's avatar
Christoph Lassner committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

    # Constructor.
    n_points = 10
    width = 1000
    height = 1000

    class Model(nn.Module):
        """A dummy model to test the integration into a stacked model."""

        def __init__(self):
            super(Model, self).__init__()
            self.gamma = 0.1
            self.renderer = Renderer(width, height, n_points)

        def forward(self, vp, vc, vr, cam_params):
            # self.gamma *= 0.995
            # print("gamma: ", self.gamma)
            return self.renderer.forward(vp, vc, vr, cam_params, self.gamma, 45.0)

    # Generate sample data.
    torch.manual_seed(1)
    vert_pos = torch.rand(n_points, 3, dtype=torch.float32) * 10.0
    vert_pos[:, 2] += 25.0
    vert_pos[:, :2] -= 5.0
    # print(vert_pos[0])
    vert_col = torch.rand(n_points, 3, dtype=torch.float32)
    vert_rad = torch.rand(n_points, dtype=torch.float32)

    # Distortion.
    # vert_pos[:, 1] += 0.5
    vert_col *= 0.5
    # vert_rad *= 0.7

    for device in [torch.device("cuda")]:
        model = Model().to(device)
        vert_pos = vert_pos.to(device)
        vert_col = vert_col.to(device)
        vert_rad = vert_rad.to(device)
        for angle_idx, angle in enumerate([-1.5, -0.8, -0.4, -0.1, 0.1, 0.4, 0.8, 1.5]):
            vert_pos_v = Variable(vert_pos, requires_grad=False)
            vert_col_v = Variable(vert_col, requires_grad=False)
            vert_rad_v = Variable(vert_rad, requires_grad=False)
            cam_params = torch.tensor(
                [
                    np.sin(angle) * 35.0,
                    0.0,
                    30.0 - np.cos(angle) * 35.0,
                    0.0,
                    -angle,
                    0.0,
                    5.0,
                    2.0,
                ],
                dtype=torch.float32,
            ).to(device)
            cam_params_v = Variable(cam_params, requires_grad=False)
            result = model.forward(vert_pos_v, vert_col_v, vert_rad_v, cam_params_v)
            result_im = (result.cpu().detach().numpy() * 255).astype(np.uint8)
            imageio.imsave(
                "reference/examples_TestRenderer_test_multiview_%d.png" % (angle_idx),
                result_im,
            )


if __name__ == "__main__":
    create_multiview()