pulsar_multiview.py 7.14 KB
Newer Older
Christoph Lassner's avatar
Christoph Lassner committed
1
#!/usr/bin/env python3
2
# Copyright (c) Meta Platforms, Inc. and affiliates.
Patrick Labatut's avatar
Patrick Labatut committed
3
4
5
6
7
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

Christoph Lassner's avatar
Christoph Lassner committed
8
9
10
"""
This example demonstrates multiview 3D reconstruction using the plain
pulsar interface. For this, reference images have been pre-generated
Christoph Lassner's avatar
Christoph Lassner committed
11
12
(you can find them at
`../../tests/pulsar/reference/examples_TestRenderer_test_multiview_%d.png`).
Christoph Lassner's avatar
Christoph Lassner committed
13
14
15
The camera parameters are assumed given. The scene is initialized with
random spheres. Gradient-based optimization is used to optimize sphere
parameters and prune spheres to converge to a 3D representation.
Christoph Lassner's avatar
Christoph Lassner committed
16
17
18
19

This example is not available yet through the 'unified' interface,
because opacity support has not landed in PyTorch3D for general data
structures yet.
Christoph Lassner's avatar
Christoph Lassner committed
20
"""
21
import logging
Christoph Lassner's avatar
Christoph Lassner committed
22
import math
Christoph Lassner's avatar
Christoph Lassner committed
23
24
25
26
27
28
29
30
31
32
from os import path

import cv2
import imageio
import numpy as np
import torch
from pytorch3d.renderer.points.pulsar import Renderer
from torch import nn, optim


Christoph Lassner's avatar
Christoph Lassner committed
33
34
35
36
37
38
LOGGER = logging.getLogger(__name__)
N_POINTS = 400_000
WIDTH = 1_000
HEIGHT = 1_000
VISUALIZE_IDS = [0, 1]
DEVICE = torch.device("cuda")
Christoph Lassner's avatar
Christoph Lassner committed
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


class SceneModel(nn.Module):
    """
    A simple scene model to demonstrate use of pulsar in PyTorch modules.

    The scene model is parameterized with sphere locations (vert_pos),
    channel content (vert_col), radiuses (vert_rad), camera position (cam_pos),
    camera rotation (cam_rot) and sensor focal length and width (cam_sensor).

    The forward method of the model renders this scene description. Any
    of these parameters could instead be passed as inputs to the forward
    method and come from a different model. Optionally, camera parameters can
    be provided to the forward method in which case the scene is rendered
    using those parameters.
    """

    def __init__(self):
        super(SceneModel, self).__init__()
        self.gamma = 1.0
        # Points.
        torch.manual_seed(1)
Christoph Lassner's avatar
Christoph Lassner committed
61
        vert_pos = torch.rand((1, N_POINTS, 3), dtype=torch.float32) * 10.0
Christoph Lassner's avatar
Christoph Lassner committed
62
63
64
65
66
67
        vert_pos[:, :, 2] += 25.0
        vert_pos[:, :, :2] -= 5.0
        self.register_parameter("vert_pos", nn.Parameter(vert_pos, requires_grad=True))
        self.register_parameter(
            "vert_col",
            nn.Parameter(
Christoph Lassner's avatar
Christoph Lassner committed
68
                torch.ones(1, N_POINTS, 3, dtype=torch.float32) * 0.5,
Christoph Lassner's avatar
Christoph Lassner committed
69
70
71
72
73
74
                requires_grad=True,
            ),
        )
        self.register_parameter(
            "vert_rad",
            nn.Parameter(
Christoph Lassner's avatar
Christoph Lassner committed
75
                torch.ones(1, N_POINTS, dtype=torch.float32) * 0.05, requires_grad=True
Christoph Lassner's avatar
Christoph Lassner committed
76
77
78
79
80
            ),
        )
        self.register_parameter(
            "vert_opy",
            nn.Parameter(
Christoph Lassner's avatar
Christoph Lassner committed
81
                torch.ones(1, N_POINTS, dtype=torch.float32), requires_grad=True
Christoph Lassner's avatar
Christoph Lassner committed
82
83
84
85
86
87
88
89
90
91
92
            ),
        )
        self.register_buffer(
            "cam_params",
            torch.tensor(
                [
                    [
                        np.sin(angle) * 35.0,
                        0.0,
                        30.0 - np.cos(angle) * 35.0,
                        0.0,
Christoph Lassner's avatar
Christoph Lassner committed
93
                        -angle + math.pi,
Christoph Lassner's avatar
Christoph Lassner committed
94
95
96
97
98
99
100
101
102
                        0.0,
                        5.0,
                        2.0,
                    ]
                    for angle in [-1.5, -0.8, -0.4, -0.1, 0.1, 0.4, 0.8, 1.5]
                ],
                dtype=torch.float32,
            ),
        )
Christoph Lassner's avatar
Christoph Lassner committed
103
        self.renderer = Renderer(WIDTH, HEIGHT, N_POINTS, right_handed_system=True)
Christoph Lassner's avatar
Christoph Lassner committed
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

    def forward(self, cam=None):
        if cam is None:
            cam = self.cam_params
            n_views = 8
        else:
            n_views = 1
        return self.renderer.forward(
            self.vert_pos.expand(n_views, -1, -1),
            self.vert_col.expand(n_views, -1, -1),
            self.vert_rad.expand(n_views, -1),
            cam,
            self.gamma,
            45.0,
        )


Christoph Lassner's avatar
Christoph Lassner committed
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
def cli():
    """
    Simple demonstration for a multi-view 3D reconstruction using pulsar.

    This example makes use of opacity, which is not yet supported through
    the unified PyTorch3D interface.

    Writes to `multiview.gif`.
    """
    LOGGER.info("Loading reference...")
    # Load reference.
    ref = torch.stack(
        [
            torch.from_numpy(
                imageio.imread(
                    "../../tests/pulsar/reference/examples_TestRenderer_test_multiview_%d.png"
                    % idx
                )
            ).to(torch.float32)
            / 255.0
            for idx in range(8)
        ]
    ).to(DEVICE)
    # Set up model.
    model = SceneModel().to(DEVICE)
    # Optimizer.
    optimizer = optim.SGD(
        [
            {"params": [model.vert_col], "lr": 1e-1},
            {"params": [model.vert_rad], "lr": 1e-3},
            {"params": [model.vert_pos], "lr": 1e-3},
Christoph Lassner's avatar
Christoph Lassner committed
152
153
        ]
    )
Christoph Lassner's avatar
Christoph Lassner committed
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

    # For visualization.
    angle = 0.0
    LOGGER.info("Writing video to `%s`.", path.abspath("multiview.avi"))
    writer = imageio.get_writer("multiview.gif", format="gif", fps=25)

    # Optimize.
    for i in range(300):
        optimizer.zero_grad()
        result = model()
        # Visualize.
        result_im = (result.cpu().detach().numpy() * 255).astype(np.uint8)
        cv2.imshow("opt", result_im[0, :, :, ::-1])
        overlay_img = np.ascontiguousarray(
            ((result * 0.5 + ref * 0.5).cpu().detach().numpy() * 255).astype(np.uint8)[
                0, :, :, ::-1
            ]
Christoph Lassner's avatar
Christoph Lassner committed
171
        )
Christoph Lassner's avatar
Christoph Lassner committed
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
        overlay_img = cv2.putText(
            overlay_img,
            "Step %d" % (i),
            (10, 40),
            cv2.FONT_HERSHEY_SIMPLEX,
            1,
            (0, 0, 0),
            2,
            cv2.LINE_AA,
            False,
        )
        cv2.imshow("overlay", overlay_img)
        cv2.waitKey(1)
        # Update.
        loss = ((result - ref) ** 2).sum()
        LOGGER.info("loss %d: %f", i, loss.item())
        loss.backward()
        optimizer.step()
        # Cleanup.
        with torch.no_grad():
            model.vert_col.data = torch.clamp(model.vert_col.data, 0.0, 1.0)
            # Remove points.
            model.vert_pos.data[model.vert_rad < 0.001, :] = -1000.0
            model.vert_rad.data[model.vert_rad < 0.001] = 0.0001
            vd = (
                (model.vert_col - torch.ones(1, 1, 3, dtype=torch.float32).to(DEVICE))
                .abs()
                .sum(dim=2)
            )
            model.vert_pos.data[vd <= 0.2] = -1000.0
        # Rotating visualization.
        cam_control = torch.tensor(
Christoph Lassner's avatar
Christoph Lassner committed
204
            [
Christoph Lassner's avatar
Christoph Lassner committed
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
                [
                    np.sin(angle) * 35.0,
                    0.0,
                    30.0 - np.cos(angle) * 35.0,
                    0.0,
                    -angle + math.pi,
                    0.0,
                    5.0,
                    2.0,
                ]
            ],
            dtype=torch.float32,
        ).to(DEVICE)
        with torch.no_grad():
            result = model.forward(cam=cam_control)[0]
            result_im = (result.cpu().detach().numpy() * 255).astype(np.uint8)
            cv2.imshow("vis", result_im[:, :, ::-1])
            writer.append_data(result_im)
            angle += 0.05
    writer.close()
    LOGGER.info("Done.")


if __name__ == "__main__":
    logging.basicConfig(level=logging.INFO)
    cli()