test_rasterize_rectangle_images.py 29.7 KB
Newer Older
Patrick Labatut's avatar
Patrick Labatut committed
1
2
3
4
5
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
6
7
8
9
10
11

import unittest
from itertools import product

import numpy as np
import torch
12
13
14
15
from common_testing import (
    TestCaseMixin,
    get_pytorch3d_dir,
    get_tests_dir,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
16
    load_rgb_image,
17
)
18
19
20
21
22
from PIL import Image
from pytorch3d.io import load_obj
from pytorch3d.renderer.cameras import FoVPerspectiveCameras, look_at_view_transform
from pytorch3d.renderer.lighting import PointLights
from pytorch3d.renderer.materials import Materials
23
24
25
26
27
28
29
30
from pytorch3d.renderer.mesh import (
    BlendParams,
    MeshRasterizer,
    MeshRenderer,
    RasterizationSettings,
    SoftPhongShader,
    TexturesUV,
)
31
32
33
34
from pytorch3d.renderer.mesh.rasterize_meshes import (
    rasterize_meshes,
    rasterize_meshes_python,
)
35
36
37
38
39
40
41
42
43
44
from pytorch3d.renderer.mesh.rasterizer import Fragments
from pytorch3d.renderer.points import (
    AlphaCompositor,
    PointsRasterizationSettings,
    PointsRasterizer,
    PointsRenderer,
)
from pytorch3d.renderer.points.rasterize_points import (
    rasterize_points,
    rasterize_points_python,
45
)
46
47
48
49
from pytorch3d.renderer.points.rasterizer import PointFragments
from pytorch3d.structures import Meshes, Pointclouds
from pytorch3d.transforms.transform3d import Transform3d
from pytorch3d.utils import torus
50
51
52


DEBUG = False
53
DATA_DIR = get_tests_dir() / "data"
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

# Verts/Faces for a simple mesh with two faces.
verts0 = torch.tensor(
    [
        [-0.7, -0.70, 1.0],
        [0.0, -0.1, 1.0],
        [0.7, -0.7, 1.0],
        [-0.7, 0.1, 1.0],
        [0.0, 0.7, 1.0],
        [0.7, 0.1, 1.0],
    ],
    dtype=torch.float32,
)
faces0 = torch.tensor([[1, 0, 2], [4, 3, 5]], dtype=torch.int64)

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
69
# Points for a simple point cloud. Get the vertices from a
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
# torus and apply rotations such that the points are no longer
# symmerical in X/Y.
torus_mesh = torus(r=0.25, R=1.0, sides=5, rings=2 * 5)
t = (
    Transform3d()
    .rotate_axis_angle(angle=90, axis="Y")
    .rotate_axis_angle(angle=45, axis="Z")
    .scale(0.3)
)
torus_points = t.transform_points(torus_mesh.verts_padded()).squeeze()


def _save_debug_image(idx, image_size, bin_size, blur):
    """
    Save a mask image from the rasterization output for debugging.
    """
    H, W = image_size
    # Save out the last image for debugging
    rgb = (idx[-1, ..., :3].cpu() > -1).squeeze()
    suffix = "square" if H == W else "non_square"
    filename = "%s_bin_size_%s_blur_%.3f_%dx%d.png"
    filename = filename % (suffix, str(bin_size), blur, H, W)
    if DEBUG:
        filename = "DEBUG_%s" % filename
        Image.fromarray((rgb.numpy() * 255).astype(np.uint8)).save(DATA_DIR / filename)


class TestRasterizeRectangleImagesErrors(TestCaseMixin, unittest.TestCase):
    def test_mesh_image_size_arg(self):
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
        meshes = Meshes(verts=[verts0], faces=[faces0])

        with self.assertRaises(ValueError) as cm:
            rasterize_meshes(
                meshes,
                (100, 200, 3),
                0.0001,
                faces_per_pixel=1,
            )
            self.assertTrue("tuple/list of (H, W)" in cm.msg)

        with self.assertRaises(ValueError) as cm:
            rasterize_meshes(
                meshes,
                (0, 10),
                0.0001,
                faces_per_pixel=1,
            )
            self.assertTrue("sizes must be positive" in cm.msg)

        with self.assertRaises(ValueError) as cm:
            rasterize_meshes(
                meshes,
                (100.5, 120.5),
                0.0001,
                faces_per_pixel=1,
            )
            self.assertTrue("sizes must be integers" in cm.msg)

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
    def test_points_image_size_arg(self):
        points = Pointclouds([verts0])

        with self.assertRaises(ValueError) as cm:
            rasterize_points(
                points,
                (100, 200, 3),
                0.0001,
                points_per_pixel=1,
            )
            self.assertTrue("tuple/list of (H, W)" in cm.msg)

        with self.assertRaises(ValueError) as cm:
            rasterize_points(
                points,
                (0, 10),
                0.0001,
                points_per_pixel=1,
            )
            self.assertTrue("sizes must be positive" in cm.msg)

        with self.assertRaises(ValueError) as cm:
            rasterize_points(
                points,
                (100.5, 120.5),
                0.0001,
                points_per_pixel=1,
            )
            self.assertTrue("sizes must be integers" in cm.msg)

158

159
class TestRasterizeRectangleImagesMeshes(TestCaseMixin, unittest.TestCase):
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
    @staticmethod
    def _clone_mesh(verts0, faces0, device, batch_size):
        """
        Helper function to detach and clone the verts/faces.
        This is needed in order to set up the tensors for
        gradient computation in different tests.
        """
        verts = verts0.detach().clone()
        verts.requires_grad = True
        meshes = Meshes(verts=[verts], faces=[faces0])
        meshes = meshes.to(device).extend(batch_size)
        return verts, meshes

    def _rasterize(self, meshes, image_size, bin_size, blur):
        """
        Simple wrapper around the rasterize function to return
        the fragment data.
        """
        face_idxs, zbuf, bary_coords, pix_dists = rasterize_meshes(
            meshes,
            image_size,
            blur,
            faces_per_pixel=1,
            bin_size=bin_size,
        )
        return Fragments(
            pix_to_face=face_idxs,
            zbuf=zbuf,
            bary_coords=bary_coords,
            dists=pix_dists,
        )

    @staticmethod
    def _save_debug_image(fragments, image_size, bin_size, blur):
        """
        Save a mask image from the rasterization output for debugging.
        """
        H, W = image_size
        # Save out the last image for debugging
        rgb = (fragments.pix_to_face[-1, ..., :3].cpu() > -1).squeeze()
        suffix = "square" if H == W else "non_square"
        filename = "triangle_%s_bin_size_%s_blur_%.3f_%dx%d.png"
        filename = filename % (suffix, str(bin_size), blur, H, W)
        if DEBUG:
            filename = "DEBUG_%s" % filename
            Image.fromarray((rgb.numpy() * 255).astype(np.uint8)).save(
                DATA_DIR / filename
            )

    def _check_fragments(self, frag_1, frag_2):
        """
        Helper function to check that the tensors in
        the Fragments frag_1 and frag_2 are the same.
        """
        self.assertClose(frag_1.pix_to_face, frag_2.pix_to_face)
        self.assertClose(frag_1.dists, frag_2.dists)
        self.assertClose(frag_1.bary_coords, frag_2.bary_coords)
        self.assertClose(frag_1.zbuf, frag_2.zbuf)

    def _compare_square_with_nonsq(
        self,
        image_size,
        blur,
        device,
        verts0,
        faces0,
        nonsq_fragment_gradtensor_list,
        batch_size=1,
    ):
        """
        Calculate the output from rasterizing a square image with the minimum of (H, W).
        Then compare this with the same square region in the non square image.
        The input mesh faces given by faces0 and verts0 are contained within the
        [-1, 1] range of the image so all the relevant pixels will be within the square region.

        `nonsq_fragment_gradtensor_list` is a list of fragments and verts grad tensors
        from rasterizing non square images.
        """
        # Rasterize the square version of the image
        H, W = image_size
        S = min(H, W)
        verts_square, meshes_sq = self._clone_mesh(verts0, faces0, device, batch_size)
        square_fragments = self._rasterize(
            meshes_sq, image_size=(S, S), bin_size=0, blur=blur
        )
        # Save debug image
246
        _save_debug_image(square_fragments.pix_to_face, (S, S), 0, blur)
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324

        # Extract the values in the square image which are non zero.
        square_mask = square_fragments.pix_to_face > -1
        square_dists = square_fragments.dists[square_mask]
        square_zbuf = square_fragments.zbuf[square_mask]
        square_bary = square_fragments.bary_coords[square_mask]

        # Retain gradients on the output of fragments to check
        # intermediate values with the non square outputs.
        square_fragments.dists.retain_grad()
        square_fragments.bary_coords.retain_grad()
        square_fragments.zbuf.retain_grad()

        # Calculate gradient for the square image
        torch.manual_seed(231)
        grad_zbuf = torch.randn_like(square_zbuf)
        grad_dist = torch.randn_like(square_dists)
        grad_bary = torch.randn_like(square_bary)
        loss0 = (
            (grad_dist * square_dists).sum()
            + (grad_zbuf * square_zbuf).sum()
            + (grad_bary * square_bary).sum()
        )
        loss0.backward()

        # Now compare against the non square outputs provided
        # in the nonsq_fragment_gradtensor_list list
        for fragments, grad_tensor, _name in nonsq_fragment_gradtensor_list:
            # Check that there are the same number of non zero pixels
            # in both the square and non square images.
            non_square_mask = fragments.pix_to_face > -1
            self.assertEqual(non_square_mask.sum().item(), square_mask.sum().item())

            # Check dists, zbuf and bary match the square image
            non_square_dists = fragments.dists[non_square_mask]
            non_square_zbuf = fragments.zbuf[non_square_mask]
            non_square_bary = fragments.bary_coords[non_square_mask]
            self.assertClose(square_dists, non_square_dists)
            self.assertClose(square_zbuf, non_square_zbuf)
            self.assertClose(
                square_bary,
                non_square_bary,
                atol=2e-7,
            )

            # Retain gradients to compare values with outputs from
            # square image
            fragments.dists.retain_grad()
            fragments.bary_coords.retain_grad()
            fragments.zbuf.retain_grad()
            loss1 = (
                (grad_dist * non_square_dists).sum()
                + (grad_zbuf * non_square_zbuf).sum()
                + (grad_bary * non_square_bary).sum()
            )
            loss1.sum().backward()

            # Get the non zero values in the intermediate gradients
            # and compare with the values from the square image
            non_square_grad_dists = fragments.dists.grad[non_square_mask]
            non_square_grad_bary = fragments.bary_coords.grad[non_square_mask]
            non_square_grad_zbuf = fragments.zbuf.grad[non_square_mask]

            self.assertClose(
                non_square_grad_dists,
                square_fragments.dists.grad[square_mask],
            )
            self.assertClose(
                non_square_grad_bary,
                square_fragments.bary_coords.grad[square_mask],
            )
            self.assertClose(
                non_square_grad_zbuf,
                square_fragments.zbuf.grad[square_mask],
            )

            # Finally check the gradients of the input vertices for
            # the square and non square case
325
            self.assertClose(verts_square.grad, grad_tensor.grad, rtol=3e-4)
326
327
328
329
330
331
332
333

    def test_gpu(self):
        """
        Test that the output of rendering non square images
        gives the same result as square images. i.e. the
        dists, zbuf, bary are all the same for the square
        region which is present in both images.
        """
334
335
336
        # Test both cases: (W > H), (H > W) as well as the case where
        # H and W are not integer multiples of each other (i.e. float aspect ratio)
        image_sizes = [(64, 128), (128, 64), (128, 256), (256, 128), (600, 1110)]
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366

        devices = ["cuda:0"]
        blurs = [0.0, 0.001]
        batch_sizes = [1, 4]
        test_cases = product(image_sizes, blurs, devices, batch_sizes)

        for image_size, blur, device, batch_size in test_cases:
            # Initialize the verts grad tensor and the meshes objects
            verts_nonsq_naive, meshes_nonsq_naive = self._clone_mesh(
                verts0, faces0, device, batch_size
            )
            verts_nonsq_binned, meshes_nonsq_binned = self._clone_mesh(
                verts0, faces0, device, batch_size
            )

            # Get the outputs for both naive and coarse to fine rasterization
            fragments_naive = self._rasterize(
                meshes_nonsq_naive,
                image_size,
                blur=blur,
                bin_size=0,
            )
            fragments_binned = self._rasterize(
                meshes_nonsq_binned,
                image_size,
                blur=blur,
                bin_size=None,
            )

            # Save out debug images if needed
367
368
            _save_debug_image(fragments_naive.pix_to_face, image_size, 0, blur)
            _save_debug_image(fragments_binned.pix_to_face, image_size, None, blur)
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402

            # Check naive and binned fragments give the same outputs
            self._check_fragments(fragments_naive, fragments_binned)

            # Here we want to compare the square image with the naive and the
            # coarse to fine methods outputs
            nonsq_fragment_gradtensor_list = [
                (fragments_naive, verts_nonsq_naive, "naive"),
                (fragments_binned, verts_nonsq_binned, "coarse-to-fine"),
            ]

            self._compare_square_with_nonsq(
                image_size,
                blur,
                device,
                verts0,
                faces0,
                nonsq_fragment_gradtensor_list,
                batch_size,
            )

    def test_cpu(self):
        """
        Test that the output of rendering non square images
        gives the same result as square images. i.e. the
        dists, zbuf, bary are all the same for the square
        region which is present in both images.

        In this test we compare between the naive C++ implementation
        and the naive python implementation as the Coarse/Fine
        method is not fully implemented in C++
        """
        # Test both when (W > H) and (H > W).
        # Using smaller image sizes here as the Python rasterizer is really slow.
403
        image_sizes = [(32, 64), (64, 32), (60, 110)]
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
        devices = ["cpu"]
        blurs = [0.0, 0.001]
        batch_sizes = [1]
        test_cases = product(image_sizes, blurs, devices, batch_sizes)

        for image_size, blur, device, batch_size in test_cases:
            # Initialize the verts grad tensor and the meshes objects
            verts_nonsq_naive, meshes_nonsq_naive = self._clone_mesh(
                verts0, faces0, device, batch_size
            )
            verts_nonsq_python, meshes_nonsq_python = self._clone_mesh(
                verts0, faces0, device, batch_size
            )

            # Compare Naive CPU with Python as Coarse/Fine rasteriztation
            # is not implemented for CPU
            fragments_naive = self._rasterize(
                meshes_nonsq_naive, image_size, bin_size=0, blur=blur
            )
            face_idxs, zbuf, bary_coords, pix_dists = rasterize_meshes_python(
                meshes_nonsq_python,
                image_size,
                blur,
                faces_per_pixel=1,
            )
            fragments_python = Fragments(
                pix_to_face=face_idxs,
                zbuf=zbuf,
                bary_coords=bary_coords,
                dists=pix_dists,
            )

            # Save debug images if DEBUG is set to true at the top of the file.
437
438
            _save_debug_image(fragments_naive.pix_to_face, image_size, 0, blur)
            _save_debug_image(fragments_python.pix_to_face, image_size, "python", blur)
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459

            # List of non square outputs to compare with the square output
            nonsq_fragment_gradtensor_list = [
                (fragments_naive, verts_nonsq_naive, "naive"),
                (fragments_python, verts_nonsq_python, "python"),
            ]
            self._compare_square_with_nonsq(
                image_size,
                blur,
                device,
                verts0,
                faces0,
                nonsq_fragment_gradtensor_list,
                batch_size,
            )

    def test_render_cow(self):
        """
        Test a larger textured mesh is rendered correctly in a non square image.
        """
        device = torch.device("cuda:0")
460
        obj_dir = get_pytorch3d_dir() / "docs/tutorials/data"
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
        obj_filename = obj_dir / "cow_mesh/cow.obj"

        # Load mesh + texture
        verts, faces, aux = load_obj(
            obj_filename, device=device, load_textures=True, texture_wrap=None
        )
        tex_map = list(aux.texture_images.values())[0]
        tex_map = tex_map[None, ...].to(faces.textures_idx.device)
        textures = TexturesUV(
            maps=tex_map, faces_uvs=[faces.textures_idx], verts_uvs=[aux.verts_uvs]
        )
        mesh = Meshes(verts=[verts], faces=[faces.verts_idx], textures=textures)

        # Init rasterizer settings
        R, T = look_at_view_transform(2.7, 0, 180)
        cameras = FoVPerspectiveCameras(device=device, R=R, T=T)

        raster_settings = RasterizationSettings(
            image_size=(512, 1024), blur_radius=0.0, faces_per_pixel=1
        )

        # Init shader settings
        materials = Materials(device=device)
        lights = PointLights(device=device)
        lights.location = torch.tensor([0.0, 0.0, -2.0], device=device)[None]
        blend_params = BlendParams(
            sigma=1e-1,
            gamma=1e-4,
            background_color=torch.tensor([1.0, 1.0, 1.0], device=device),
        )

        # Init renderer
        renderer = MeshRenderer(
            rasterizer=MeshRasterizer(cameras=cameras, raster_settings=raster_settings),
            shader=SoftPhongShader(
                lights=lights,
                cameras=cameras,
                materials=materials,
                blend_params=blend_params,
            ),
        )

        # Load reference image
        image_ref = load_rgb_image("test_cow_image_rectangle.png", DATA_DIR)

        for bin_size in [0, None]:
            # Check both naive and coarse to fine produce the same output.
            renderer.rasterizer.raster_settings.bin_size = bin_size
            images = renderer(mesh)
            rgb = images[0, ..., :3].squeeze().cpu()

            if DEBUG:
                Image.fromarray((rgb.numpy() * 255).astype(np.uint8)).save(
                    DATA_DIR / "DEBUG_cow_image_rectangle.png"
                )

            # NOTE some pixels can be flaky
            cond1 = torch.allclose(rgb, image_ref, atol=0.05)
            self.assertTrue(cond1)
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657


class TestRasterizeRectangleImagesPointclouds(TestCaseMixin, unittest.TestCase):
    @staticmethod
    def _clone_pointcloud(verts0, device, batch_size):
        """
        Helper function to detach and clone the verts.
        This is needed in order to set up the tensors for
        gradient computation in different tests.
        """
        verts = verts0.detach().clone()
        verts.requires_grad = True
        pointclouds = Pointclouds(points=[verts])
        pointclouds = pointclouds.to(device).extend(batch_size)
        return verts, pointclouds

    def _rasterize(self, meshes, image_size, bin_size, blur):
        """
        Simple wrapper around the rasterize function to return
        the fragment data.
        """
        idxs, zbuf, dists = rasterize_points(
            meshes,
            image_size,
            blur,
            points_per_pixel=1,
            bin_size=bin_size,
        )
        return PointFragments(
            idx=idxs,
            zbuf=zbuf,
            dists=dists,
        )

    def _check_fragments(self, frag_1, frag_2):
        """
        Helper function to check that the tensors in
        the Fragments frag_1 and frag_2 are the same.
        """
        self.assertClose(frag_1.idx, frag_2.idx)
        self.assertClose(frag_1.dists, frag_2.dists)
        self.assertClose(frag_1.zbuf, frag_2.zbuf)

    def _compare_square_with_nonsq(
        self,
        image_size,
        blur,
        device,
        points,
        nonsq_fragment_gradtensor_list,
        batch_size=1,
    ):
        """
        Calculate the output from rasterizing a square image with the minimum of (H, W).
        Then compare this with the same square region in the non square image.
        The input points are contained within the [-1, 1] range of the image
        so all the relevant pixels will be within the square region.

        `nonsq_fragment_gradtensor_list` is a list of fragments and verts grad tensors
        from rasterizing non square images.
        """
        # Rasterize the square version of the image
        H, W = image_size
        S = min(H, W)
        points_square, pointclouds_sq = self._clone_pointcloud(
            points, device, batch_size
        )
        square_fragments = self._rasterize(
            pointclouds_sq, image_size=(S, S), bin_size=0, blur=blur
        )
        # Save debug image
        _save_debug_image(square_fragments.idx, (S, S), 0, blur)

        # Extract the values in the square image which are non zero.
        square_mask = square_fragments.idx > -1
        square_dists = square_fragments.dists[square_mask]
        square_zbuf = square_fragments.zbuf[square_mask]

        # Retain gradients on the output of fragments to check
        # intermediate values with the non square outputs.
        square_fragments.dists.retain_grad()
        square_fragments.zbuf.retain_grad()

        # Calculate gradient for the square image
        torch.manual_seed(231)
        grad_zbuf = torch.randn_like(square_zbuf)
        grad_dist = torch.randn_like(square_dists)
        loss0 = (grad_dist * square_dists).sum() + (grad_zbuf * square_zbuf).sum()
        loss0.backward()

        # Now compare against the non square outputs provided
        # in the nonsq_fragment_gradtensor_list list
        for fragments, grad_tensor, _name in nonsq_fragment_gradtensor_list:
            # Check that there are the same number of non zero pixels
            # in both the square and non square images.
            non_square_mask = fragments.idx > -1
            self.assertEqual(non_square_mask.sum().item(), square_mask.sum().item())

            # Check dists, zbuf and bary match the square image
            non_square_dists = fragments.dists[non_square_mask]
            non_square_zbuf = fragments.zbuf[non_square_mask]
            self.assertClose(square_dists, non_square_dists)
            self.assertClose(square_zbuf, non_square_zbuf)

            # Retain gradients to compare values with outputs from
            # square image
            fragments.dists.retain_grad()
            fragments.zbuf.retain_grad()
            loss1 = (grad_dist * non_square_dists).sum() + (
                grad_zbuf * non_square_zbuf
            ).sum()
            loss1.sum().backward()

            # Get the non zero values in the intermediate gradients
            # and compare with the values from the square image
            non_square_grad_dists = fragments.dists.grad[non_square_mask]
            non_square_grad_zbuf = fragments.zbuf.grad[non_square_mask]

            self.assertClose(
                non_square_grad_dists,
                square_fragments.dists.grad[square_mask],
            )
            self.assertClose(
                non_square_grad_zbuf,
                square_fragments.zbuf.grad[square_mask],
            )

            # Finally check the gradients of the input vertices for
            # the square and non square case
            self.assertClose(points_square.grad, grad_tensor.grad, rtol=2e-4)

    def test_gpu(self):
        """
        Test that the output of rendering non square images
        gives the same result as square images. i.e. the
        dists, zbuf, idx are all the same for the square
        region which is present in both images.
        """
658
659
660
        # Test both cases: (W > H), (H > W) as well as the case where
        # H and W are not integer multiples of each other (i.e. float aspect ratio)
        image_sizes = [(64, 128), (128, 64), (128, 256), (256, 128), (600, 1110)]
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725

        devices = ["cuda:0"]
        blurs = [5e-2]
        batch_sizes = [1, 4]
        test_cases = product(image_sizes, blurs, devices, batch_sizes)

        for image_size, blur, device, batch_size in test_cases:
            # Initialize the verts grad tensor and the meshes objects
            verts_nonsq_naive, pointcloud_nonsq_naive = self._clone_pointcloud(
                torus_points, device, batch_size
            )
            verts_nonsq_binned, pointcloud_nonsq_binned = self._clone_pointcloud(
                torus_points, device, batch_size
            )

            # Get the outputs for both naive and coarse to fine rasterization
            fragments_naive = self._rasterize(
                pointcloud_nonsq_naive,
                image_size,
                blur=blur,
                bin_size=0,
            )
            fragments_binned = self._rasterize(
                pointcloud_nonsq_binned,
                image_size,
                blur=blur,
                bin_size=None,
            )

            # Save out debug images if needed
            _save_debug_image(fragments_naive.idx, image_size, 0, blur)
            _save_debug_image(fragments_binned.idx, image_size, None, blur)

            # Check naive and binned fragments give the same outputs
            self._check_fragments(fragments_naive, fragments_binned)

            # Here we want to compare the square image with the naive and the
            # coarse to fine methods outputs
            nonsq_fragment_gradtensor_list = [
                (fragments_naive, verts_nonsq_naive, "naive"),
                (fragments_binned, verts_nonsq_binned, "coarse-to-fine"),
            ]

            self._compare_square_with_nonsq(
                image_size,
                blur,
                device,
                torus_points,
                nonsq_fragment_gradtensor_list,
                batch_size,
            )

    def test_cpu(self):
        """
        Test that the output of rendering non square images
        gives the same result as square images. i.e. the
        dists, zbuf, idx are all the same for the square
        region which is present in both images.

        In this test we compare between the naive C++ implementation
        and the naive python implementation as the Coarse/Fine
        method is not fully implemented in C++
        """
        # Test both when (W > H) and (H > W).
        # Using smaller image sizes here as the Python rasterizer is really slow.
726
        image_sizes = [(32, 64), (64, 32), (60, 110)]
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
        devices = ["cpu"]
        blurs = [5e-2]
        batch_sizes = [1]
        test_cases = product(image_sizes, blurs, devices, batch_sizes)

        for image_size, blur, device, batch_size in test_cases:
            # Initialize the verts grad tensor and the meshes objects
            verts_nonsq_naive, pointcloud_nonsq_naive = self._clone_pointcloud(
                torus_points, device, batch_size
            )
            verts_nonsq_python, pointcloud_nonsq_python = self._clone_pointcloud(
                torus_points, device, batch_size
            )

            # Compare Naive CPU with Python as Coarse/Fine rasteriztation
            # is not implemented for CPU
            fragments_naive = self._rasterize(
                pointcloud_nonsq_naive, image_size, bin_size=0, blur=blur
            )
            idxs, zbuf, pix_dists = rasterize_points_python(
                pointcloud_nonsq_python,
                image_size,
                blur,
                points_per_pixel=1,
            )
            fragments_python = PointFragments(
                idx=idxs,
                zbuf=zbuf,
                dists=pix_dists,
            )

            # Save debug images if DEBUG is set to true at the top of the file.
            _save_debug_image(fragments_naive.idx, image_size, 0, blur)
            _save_debug_image(fragments_python.idx, image_size, "python", blur)

            # List of non square outputs to compare with the square output
            nonsq_fragment_gradtensor_list = [
                (fragments_naive, verts_nonsq_naive, "naive"),
                (fragments_python, verts_nonsq_python, "python"),
            ]
            self._compare_square_with_nonsq(
                image_size,
                blur,
                device,
                torus_points,
                nonsq_fragment_gradtensor_list,
                batch_size,
            )

    def test_render_pointcloud(self):
        """
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
778
        Test a textured point cloud is rendered correctly in a non square image.
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
        """
        device = torch.device("cuda:0")
        pointclouds = Pointclouds(
            points=[torus_points * 2.0],
            features=torch.ones_like(torus_points[None, ...]),
        ).to(device)
        R, T = look_at_view_transform(2.7, 0.0, 0.0)
        cameras = FoVPerspectiveCameras(device=device, R=R, T=T)
        raster_settings = PointsRasterizationSettings(
            image_size=(512, 1024), radius=5e-2, points_per_pixel=1
        )
        rasterizer = PointsRasterizer(cameras=cameras, raster_settings=raster_settings)
        compositor = AlphaCompositor()
        renderer = PointsRenderer(rasterizer=rasterizer, compositor=compositor)

        # Load reference image
        image_ref = load_rgb_image("test_pointcloud_rectangle_image.png", DATA_DIR)

        for bin_size in [0, None]:
            # Check both naive and coarse to fine produce the same output.
            renderer.rasterizer.raster_settings.bin_size = bin_size
            images = renderer(pointclouds)
            rgb = images[0, ..., :3].squeeze().cpu()

            if DEBUG:
                Image.fromarray((rgb.numpy() * 255).astype(np.uint8)).save(
                    DATA_DIR / "DEBUG_pointcloud_rectangle_image.png"
                )

            # NOTE some pixels can be flaky
            cond1 = torch.allclose(rgb, image_ref, atol=0.05)
            self.assertTrue(cond1)