pulsar_basic_unified.py 2.83 KB
Newer Older
Christoph Lassner's avatar
Christoph Lassner committed
1
2
3
4
5
6
7
8
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
"""
This example demonstrates the most trivial use of the pulsar PyTorch3D
interface for sphere renderering. It renders and saves an image with
10 random spheres.
Output: basic-pt3d.png.
"""
Christoph Lassner's avatar
Christoph Lassner committed
9
import logging
Christoph Lassner's avatar
Christoph Lassner committed
10
11
12
13
14
from os import path

import imageio
import torch
from pytorch3d.renderer import (
15
    PerspectiveCameras,
Christoph Lassner's avatar
Christoph Lassner committed
16
17
18
19
20
21
22
    PointsRasterizationSettings,
    PointsRasterizer,
    PulsarPointsRenderer,
)
from pytorch3d.structures import Pointclouds


Christoph Lassner's avatar
Christoph Lassner committed
23
LOGGER = logging.getLogger(__name__)
Christoph Lassner's avatar
Christoph Lassner committed
24
25


Christoph Lassner's avatar
Christoph Lassner committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
def cli():
    """
    Basic example for the pulsar sphere renderer using the PyTorch3D interface.

    Writes to `basic-pt3d.png`.
    """
    LOGGER.info("Rendering on GPU...")
    torch.manual_seed(1)
    n_points = 10
    width = 1_000
    height = 1_000
    device = torch.device("cuda")
    # Generate sample data.
    vert_pos = torch.rand(n_points, 3, dtype=torch.float32, device=device) * 10.0
    vert_pos[:, 2] += 25.0
    vert_pos[:, :2] -= 5.0
    vert_col = torch.rand(n_points, 3, dtype=torch.float32, device=device)
    pcl = Pointclouds(points=vert_pos[None, ...], features=vert_col[None, ...])
    # Alternatively, you can also use the look_at_view_transform to get R and T:
    # R, T = look_at_view_transform(
    #     dist=30.0, elev=0.0, azim=180.0, at=((0.0, 0.0, 30.0),), up=((0, 1, 0),),
    # )
    cameras = PerspectiveCameras(
        # The focal length must be double the size for PyTorch3D because of the NDC
        # coordinates spanning a range of two - and they must be normalized by the
        # sensor width (see the pulsar example). This means we need here
        # 5.0 * 2.0 / 2.0 to get the equivalent results as in pulsar.
        focal_length=(5.0 * 2.0 / 2.0,),
        R=torch.eye(3, dtype=torch.float32, device=device)[None, ...],
        T=torch.zeros((1, 3), dtype=torch.float32, device=device),
Nikhila Ravi's avatar
Nikhila Ravi committed
56
        image_size=((height, width),),
Christoph Lassner's avatar
Christoph Lassner committed
57
58
59
60
        device=device,
    )
    vert_rad = torch.rand(n_points, dtype=torch.float32, device=device)
    raster_settings = PointsRasterizationSettings(
Nikhila Ravi's avatar
Nikhila Ravi committed
61
        image_size=(height, width),
Christoph Lassner's avatar
Christoph Lassner committed
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
        radius=vert_rad,
    )
    rasterizer = PointsRasterizer(cameras=cameras, raster_settings=raster_settings)
    renderer = PulsarPointsRenderer(rasterizer=rasterizer).to(device)
    # Render.
    image = renderer(
        pcl,
        gamma=(1.0e-1,),  # Renderer blending parameter gamma, in [1., 1e-5].
        znear=(1.0,),
        zfar=(45.0,),
        radius_world=True,
        bg_col=torch.ones((3,), dtype=torch.float32, device=device),
    )[0]
    LOGGER.info("Writing image to `%s`.", path.abspath("basic-pt3d.png"))
    imageio.imsave(
        "basic-pt3d.png", (image.cpu().detach() * 255.0).to(torch.uint8).numpy()
    )
    LOGGER.info("Done.")


if __name__ == "__main__":
    logging.basicConfig(level=logging.INFO)
    cli()