test_utils.py 2.48 KB
Newer Older
Emilien Garreau's avatar
Emilien Garreau committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.


import unittest

import torch

from pytorch3d.implicitron.models.utils import preprocess_input, weighted_sum_losses


class TestUtils(unittest.TestCase):
    def test_prepare_inputs_wrong_num_dim(self):
        img = torch.randn(3, 3, 3)
Jeremy Reizenstein's avatar
lint  
Jeremy Reizenstein committed
18
19
20
21
22
        text = (
            "Model received unbatched inputs. "
            + "Perhaps they came from a FrameData which had not been collated."
        )
        with self.assertRaisesRegex(ValueError, text):
Emilien Garreau's avatar
Emilien Garreau committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
            img, fg_prob, depth_map = preprocess_input(
                img, None, None, True, True, 0.5, (0.0, 0.0, 0.0)
            )

    def test_prepare_inputs_mask_image_true(self):
        batch, channels, height, width = 2, 3, 10, 10
        img = torch.ones(batch, channels, height, width)
        # Create a mask on the lower triangular matrix
        fg_prob = torch.tril(torch.ones(batch, 1, height, width)) * 0.3

        out_img, out_fg_prob, out_depth_map = preprocess_input(
            img, fg_prob, None, True, False, 0.3, (0.0, 0.0, 0.0)
        )

        self.assertTrue(torch.equal(out_img, torch.tril(img)))
        self.assertTrue(torch.equal(out_fg_prob, fg_prob >= 0.3))
        self.assertIsNone(out_depth_map)

    def test_prepare_inputs_mask_depth_true(self):
        batch, channels, height, width = 2, 3, 10, 10
        img = torch.ones(batch, channels, height, width)
        depth_map = torch.randn(batch, channels, height, width)
        # Create a mask on the lower triangular matrix
        fg_prob = torch.tril(torch.ones(batch, 1, height, width)) * 0.3

        out_img, out_fg_prob, out_depth_map = preprocess_input(
            img, fg_prob, depth_map, False, True, 0.3, (0.0, 0.0, 0.0)
        )

        self.assertTrue(torch.equal(out_img, img))
        self.assertTrue(torch.equal(out_fg_prob, fg_prob >= 0.3))
        self.assertTrue(torch.equal(out_depth_map, torch.tril(depth_map)))

    def test_weighted_sum_losses(self):
        preds = {"a": torch.tensor(2), "b": torch.tensor(2)}
        weights = {"a": 2.0, "b": 0.0}
        loss = weighted_sum_losses(preds, weights)
        self.assertEqual(loss, 4.0)

    def test_weighted_sum_losses_raise_warning(self):
        preds = {"a": torch.tensor(2), "b": torch.tensor(2)}
        weights = {"c": 2.0, "d": 2.0}
        self.assertIsNone(weighted_sum_losses(preds, weights))